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Abstract

In this paper we investigate the mechanical behavior of Cosserat shells made from a material with voids. We formu-
late Saint-Venant’s problem for cylindrical shells and determine the solution of the relaxed problem. Then, we apply the
theoretical results to study the deformation of circular cylindrical shells. We also compare the solution of Saint-
Venant’s problem for Cosserat shells with corresponding results from the classical theory of shells.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The torsion of elastic cylindrical shells modelled as Cosserat surfaces has been studied by Wenner (1968).
A Cosserat surface is a two-dimensional continuum with a deformable vector (called director) assigned to
every point of the surface. For a detailed presentation of the theory of shells described as Cosserat surfaces
we refer to the monograph of Naghdi (1972). In the last decades, the theory of Cosserat shells has received
considerable attention and has been investigated by many scientists (see e.g., Steele, 1971; Rubin, 1987,
Antman, 1995; Steigmann, 1999). In the monograph of Rubin (2000) several applications of the Cosserat
theories are described. An interesting application of Cosserat shells for the modelling of interphases in elas-
tic media has recently been presented by Rubin and Benveniste (2004).

In the present paper, we extend the results of Wenner (1968) and consider the deformation of Cosserat
cylindrical shells made from a material with voids (also called pores). Moreover, in addition to the torsion
problem, we also investigate the extension, bending and flexure problems for porous cylindrical shells. In
the case when the porosity is zero, we find the same solution for the torsion problem as the one obtained by
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Wenner, with the help of a different method. We mention that the solutions of the extension, bending and
flexure problems for the case of Cosserat shells which are not porous have been deduced previously by
Birsan (2004).

For our purpose, we employ the theory established by Nunziato and Cowin (1979) and Cowin and
Nunziato (1983) for elastic materials with voids. In this theory, the bulk density is written as the product
of two fields: the matrix material density field and the volume fraction field. Thus, an additional degree of
kinematical freedom is introduced. Capriz and Podio-Guidugli (1981) have shown that the Nunziato—
Cowin theory for elastic materials with voids can also be regarded as a particular case of the theory of
media with microstructure. In the last twenty years, there has been much written on the subject of elastic
materials with voids (see e.g., Capriz, 1989; Ciarletta and Iesan, 1993). Several results concerning the theory
of Cosserat shells made from a material with voids have been established by Birsan (2000). The Nunziato—
Cowin theory was also employed to investigate the bending of thermoelastic porous plates in Birsan (2003).

The first part of this article contains a review of the basic equations that govern the equilibrium of Coss-
erat shells made from an isotropic material with voids, in the context of the linear theory. Then, we formu-
late Saint-Venant’s problem for cylindrical shells. In Section 4 we determine the solution of the relaxed
Saint-Venant’s problem for the case of open cylindrical surfaces. To this aim, we employ a method estab-
lished by Iesan (1986, 1987) in the context of the classical theory of elasticity and we separate the relaxed
problem in two parts: the extension-bending-torsion problem and the flexure problem. In Section 5 we
study the corresponding deformations of closed cylindrical shells. Then, we use the theoretical results to
determine the solution for circular cylindrical shells. In the last section, we compare the solution of
Saint-Venant’s problem for Cosserat shells (in the non-porous case) with the corresponding results from
the classical theories of shells and plates. Also, we observe an interesting analogy with the classical
Saint-Venant’s solution from the three-dimensional theory of elasticity.

2. Basic equations

Naghdi (1972) has discussed the theory of shells modelled as Cosserat surfaces. The theory of thermo-
elastic Cosserat shells with voids was presented by Birsan (2000).

In the present paper we confine our attention to the isothermal linear theory for Cosserat shells with
voids and we begin with a review of the basic equations. We mention that this theory is exact, in the sense
that it involves no approximations, beyond those already assumed by the linearity of the theory.

2.1. Cosserat shells with voids

Let & be the reference configuration of a Cosserat surface. We consider a curvilinear material coordinate
system 0% (¢ = 1,2) on & and assume that (0',0°) € =, where ¥ is an open bounded set of R?. The surface %’
is defined by an injective mapping R of class C* from X into the Euclidean three-dimensional space. We
denote by #(6°¢) the position vector and by d(6” ) the deformable director assigned to the material point
of the surface . which coordinates are (6%) at time 7. The motion of the Cosserat surface is defined by

r=r0"1), d=d(0"1), (0")eX, teT, 2.1)

where J is a time interval. Let R(0%) and D(6%) be the position vector and the deformable director, respec-
tively, in the reference configuration.
We consider the covariant base vectors along the 6*-curves and the unit normal to the surface .% defined by

OR A, x A,

Ay=— (a=1,2), A3=—1""2_ 2.2
” 661 (Cx ’ >7 3 |A1 XA2| ( )
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Let us denote by A,z and B, the first and second fundamental forms of the surface &
Ay =Ay-Ag, Byp=Bpg, =—A,-Asp=A3- Ay,

where a subscript comma represents partial differentiation with respect to the surface coordinates (0%).
Throughout this paper we employ the usual summation convention. The Latin subscripts are understood
to range over the integers 1,2,3, whereas Greek subscripts are confined to the range 1,2.

We remind that in the Nunziato—Cowin theory of materials with voids the mass density p has the
decomposition

p =y,
where 7 is the density field of the matrix material and # is the volume fraction field (0 <# < 1). In the ref-
erence configuration we have py = 7¢7o.

The infinitesimal displacement «, the director displacement d and the change in the volume fraction field
¢ are defined by

u=r—R, 06=d-D, ¢=n—n,

We designate by u; and §; the components u; =u- A;, 5; =0 - A;.

We confine our attention to elastic porous shells with constant thickness in the reference configuration.
According to Naghdi (1972,p. 447), this class of shells is characterized by the fact that the reference director
coincides with the unit normal to the reference surface, i.e. D = A;.

The linear strain measures e,g, y; and p;, satisfy the following geometrical equations:

e,p = %(uoc\ﬁ + upgy) — Bypuiz, 7, = 0y + Uz, + Bluy,

) ] (2.3)
V3 =03, Py = Opu — Biuyp + BBz, p3, = 034,

where a subscript vertical bar stands for covariant differentiation with respect to the metric tensor A4,pg.

Let ¢ be an arbitrary curve on % and let N, M and / be the contact force, the contact director couple and
the equilibrated stress, respectively, acting per unit length of ¢ (see Naghdi, 1972). Then, we have the fol-
lowing relations of Cauchy type:

N=N", M=M"v, h=Dh,, (2.4)

where v = v,4” represents the unit normal to ¢ tangent to the surface &.
We define N*¥,7* and M* by the relations

N*=N"P4,+V*4;, M"=M"4, (2.5)
and we introduce the notation N’*# for the following expression:

N"F = N* + BIMm™. (2.6)
The equations of equilibrium for porous Cosserat surfaces are

N&/j\z_Bng“l‘pOfﬂ:Ov Ve \1+BaﬁNaﬂ+p0f3 :07 (27)

Mocﬁ‘a _ V/f + polﬁ — 0’ Mot3 "= V3 + ,0013 _ 0’ (28)

h\,—g+pwp=0. (2.9)

In the relations (2.7), (2.8) the field quantities per unit mass /' and / stand for the components of the as-
signed force and assigned director couple, respectively. In the equation of equilibrated force (2.9), g repre-
sents the intrinsic equilibrated body force per unit area and p is the external equilibrated body force per unit
mass.
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The constitutive equations for homogeneous porous Cosserat shells possessing holohedral isotropy (i.e.
isotropy with a centre of symmetry, see Naghdi, 1972, Section 13y) are the following:

NP = [ 4747 + ap (A7 AP + 4°47) e,s + a0d™y; + BA™ o,

V' =oaA"yy, VP =y + wdPe,s + Bso,

MV = (0sAPA™ + agA" AP + 0,4 A7) p. 5, (2.10)
M* = oA pyy + B4 ¢,

g = P3¢ + Bsdless + P53, h* = ﬁlAaﬁq)yﬁ + [3214“/393/9,

where oy, ...,0a9 and f5,. .., 5 are constant constitutive coefficients.
In this paper, we consider static deformations of homogeneous and holohedral isotropic Cosserat shells
subject to boundary conditions of the form

N=N, M=M, h=h ond?, (2.11)

where N , M and 7 are prescribed functions.
2.2. Cylindrical Cosserat surfaces

In this section we deduce the basic equations for cylindrical Cosserat surfaces made from a material with
voids.

Let us assume that the reference configuration % of a Cosserat shell is a cylindrical surface. We consider
a rectangular Cartesian coordinate frame Oxx,x3 such that the generator of the surface .# is parallel to
Ox; and & is situated between the planes x3 = 0 and 4. We denote by %. the curve section of the surface
perpendicular to the generator, lying in the plane x3 = z. On the surface &, we choose the curvilinear coor-
dinates 0' = s, 0* = z, where s € [0, 5] is the arc parameter along the curve %. and z = x3, with z € [0, 4]. The
parametric equation of the surface & is

R = R(s,z) = x,(s)e, + ze3, s€[0,5], ze€][0,h], (2.12)

where e; represent the unit vectors along the axes Ox;. The curves %, are assumed to be simple (open or
closed) curves of class C*. The unit tangent and normal vectors to %. are given by

©(s) =x,(s)es, n(s) = epxp(s)es, (2.13)

where ¢, is the two-dimensional alternator defined by € = —e3; = 1, €j1 = €22 = 0 and we use the notation
( ) =d( )/ds. The following relations take place:

Ay =1, Ay=e;, A;=n,

20) = K ()6), ) = i = ) _
1

R(s)’
where 6,5 is the Kronecker delta, R(s) denotes the curvature radius of . and o(s) designates the angle be-
tween the vectors z(s) and e;. We observe that the Christoffel symbols associated with the surface .% are all
zero: I iﬁ = 0. Thus, the physical components of any tensor coincide with the covariant and with the con-
travariant components of the same tensor (see Naghdi, 1972, Section A.4). Taking into account that 0" = s,
0°> =z and A5 = n, in what follows we shall write the subscripts s, z and n instead of the indices 1, 2 and 3,
respectively, for the components u;, 6;, €xp, Vi, Piss N VI M* and h* of the tensors defined in Section 2.1.

Aa/gZ(Sd/;, By =—- By = By 2322:07
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Then, the geometrical relations (2.3) become

Ou u, Ou, 1 (Ou, Ou,
ess:_+— € = esz:ezszi + )

ds  R(s)’ oz’ 0z  Os
u Ou Ou
-5 — s n =3 n yo=3
’ys S R(S) @S i /z z + aZ Y ))n n
— % + L % + i — % — %
pss - as R(S) 6s R2 (S) I pzz - 62 9 psz - 62 9
09, 1 Qu 09, 09,

P :a‘i‘mga e
In view of the constitutive equations (2.10), in the case of cylindrical Cosserat shells we obtain
os + o6 + o7
R(s)
N.. = ajeg + (1 + 2m)e.. + %9y, + B4,

o
Nss = (al + 20(2)ess + o€, + pss + ITZ)pZZ + 059%1 + ﬁ4(,07
N =2 Ny = 230, +— (%62 + 27P,2)
sz = 200€z, zs = 20085 T < U6 Pz T 070, )5
; ) 2 R(S) 6. 7P

V,= o3, V,= %37, V,= 059(ess + ezz) + oy, + ﬁSgov
Mss = (O(S + o6 + 0‘7)pss + 50,5 Mzz = U504 + (OCS + a6 + a7)pzz>
M, = A6z + 07, M = %Py + A7 0,

dp Op
Msn :O‘S/)ns—’_ﬁzaa Mzn = “Spnz+ﬁ2§7

0 0
hy = Bop,s + By Ff, h. = Byp,. + B af(zp; g = Piles +e) + Bsy, + Bso.

2037

(2.15)

(2.16)

The equilibrium equations (2.7)~(2.9) for the case when the assigned body loads f, /' and p are null can be

written in the form

0 0 1 0 0

va sz V :0, sz sz*O
o T T RE) o =T
0 0 1 0 0

V V —Nw:o; M _Mzs* Vs:()a
o e TRE) e Ty
EM —|—9M V.=0 aM + aM V,=20
as pr4 aZ zz z — Y a a zn n — ¥
0 0

(2.17)

Relations (2.15)—2.17) represent the field equations that govern the static deformation of cylindrical Coss-

erat shells and they will be employed in the subsequent sections.

The expression of the strain energy density associated to cylindrical Cosserat surfaces with voids is given

by
2
Y = Joiemeps + oaeqpens + 3037,7, + 30u(ys)” + %(a5pmpﬁ/3 + U6PupPap + 100 py) + 3803,03,
+ 00473 + 3100 P + BrP3,0s + 3307 + B + Bsys0-

(2.18)

Under the hypothesis that the strain energy density ¥ is a positive definite quadratic form of the variables

eup Vi» Piar®P>Pss» it follows that the constitutive coefficients satisfy the restrictions:
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oy >0, 0>0, o3>0, oyl +om)—of>0,
205 +og+07 >0, og>0, ogto; >0, og>0, O(gﬁl—ﬁ§>0,
oy o Py

Olo oy Ps|>0.

Bs  Bs B

3. Statement of Saint-Venant’s problem for Cosserat shells

Let us consider a porous shell whose reference configuration is the cylindrical surface .% given by (2.12)
and let %, €; be the end edge curves perpendicular to the generator.

We mention that the cylindrical surface .% can be either open (in the case when the curves €, are open) or
closed (when the curves % are closed). The boundary of a closed cylindrical Cosserat shell consists of the
end edge curves %, and %;. For an open cylindrical shell, we denote by Ly and L; the lateral edges parallel to
the generator characterized by the equations s = 0 and 5, respectively. In this case, the boundary of & is
0 =6 U%; ULy U L.

For porous cylindrical shells, the Saint-Venant’s problem consists in finding a solution v = {u,d, ¢} of
the Egs. (2.15)—(2.17) subject to the boundary conditions on the end edges

N=NY M=MY hr=0 on%,,

3.1
N=N? M=M? hL=0 on%;, 31)

where M® and M™(a = 1,2) are prescribed functions. In the case of open cylindrical surfaces, the solution
v must satisfy, in addition, the following null conditions on the lateral edges:

N=0, M=0, h=0 onLyUL. (3.2)

The purpose of this paper is to determine a solution of the relaxed Saint-Venant’s problem for cylindrical
shells. In the relaxed formulation of Saint-Venant’s problem the conditions (3.1); , are replaced by the fol-
lowing requirements:

/ Ndl =2, /(RxN+DxM)dl=/%°. (3.3)
%(] (50

The above relations express the conditions that the resultant of the contact forces acting on % is equal to a
prescribed vector 22° and the resultant moment about O of the contact forces and contact director couples
acting on %, has the prescribed value .#°.

As a consequence of the equilibrium equations (2.17);_¢ and of the conditions (3.3), we deduce that

/ Ndl = -2°, / (RxN+DxM)dl = —.u°. (3.4)
Ch h

Also, in the relaxed Saint-Venant’s problem the conditions (3.1); ¢ are replaced by the requirements that the
resultant equilibrated stress acting on each end edge curve is zero, i.e.

/ hdl =0, / hdl = 0. (3.5)
%o %/‘;,
On the edge curve %, we have v = —e3 and

N = _(NZSAI +szA2 + VzA3)7 M = _(MzsAl +MzzA2 +MznA3) on (60'
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Hence, the conditions (3.3) can be written in the form
/ (X, Nz + expxy Vo) dl = =22, / N.dl = %5,
%o o

(X;Mzz + Eﬁa)C/szz) dl = %2, (36)

%o

/ (€xpXxpN o + x,X, V. — M) dl = /%(3),
%o

where we have denoted by #! = #° - ¢;, M = M - ¢;. Similarly, from the conditions (3.5) we obtain that

/hzdlzo, /hzdlzo. (3.7)
%o b,

h
Since Ly and L; are parallel to e;, the conditions (3.2) on the lateral edges are equivalent to

Ny=N,=V,=0, My=M,=M, =0, h,=0 onLyUL,. (3.8)

To summarize, the relaxed Saint-Venant’s problem consists in the determination of a solution v = {u, d, ¢}
of class C*(#) N C' () for the Eqs. (2.15)~(2.17) which satisfies the relations (3.6) and (3.7) and the bound-
ary conditions on the lateral edges (3.8) (in the case of an open surface).

In the same way as in the classical theory of elasticity (see Iesan, 1987), we remark that the relaxed Saint-
Venant’s problem for cylindrical shells decomposes into two problems (P;) and (P,) characterized by the
following assumptions concerning the resultants 22° and .4

(P] )I 9?2 = O,

(Py): =" =0.
The problem (P;) is the extension, bending and torsion problem for cylindrical shells, while (P») is the flex-
ure problem. We denote by K (%3, .4\, 43, .#3) and K ;;(#), %) the sets of solutions of the problems (P;)
and (P,), respectively, and by & the set of all elements v = {u, d, ¢} that satisfy Eqgs. (2.15)—(2.17) and the

boundary conditions on the lateral edges (3.8) (in the case of an open surface). For any v = {u, 4, ¢}, we
introduce the vector-valued linear functionals 2(-) and .#(-) defined by

9?(1;):/% N(v)dl, ./%(v):/%’ [R x N(v) + D x M(v)]d/

and we designate by #,(v) = R(v) - e, and M ,(v) = M(v) - e,.
In what follows, we use the method established by Iesan (1986, 1987) in order to determine a solution of
the relaxed Saint-Venant’s problem for cylindrical Cosserat shells. We begin with the following theorem.

Theorem 1. If v € 7 and & € C'(¥), then £ € & and the following relations hold:

ov ov
~ == e ~ = €y R o
@(GX3> 07 W<6x3) € ﬁﬂﬁ(v)e

Proof. In view of (2.15)—(2.17) and (3.8), it follows that a% € 9. We obtain

ov ) d
GN_ [ C _ [ % 4 y y
@(a)@) cgo GZN(U)dl Zf oz (NaAi + NoAs + VoAs)dl

= / EN_YS +dV, |t + gste3 + E Vi— 06Ny |n|dl
% L\0s Os Os

0
= / . (NS’ST + N.vze3 + V,s‘n) d/=0.
@, 0
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On the other hand, by virtue of the Eqgs. (2.14) and (2.17) and of the relation N.; = N,. + ¢’ M., we can
write

ov d 5
ﬂ<a_xa> - _[«o {R X 55 Wadi + Nady + Veds) + Ay x o

0 , 0 0 ,
— /%/0 {(xaeoc) X |:(6SNW + o VS>‘L' =+ <6SNYZ> es + (as VX — O'Nm>n:|
+ gAlss_l/'s €3 — ngz_Vz T dl
Os Os

0
- / 3 [(Nssea,;x“x;; — Vxxl + M)es + (N€upxp — Mszx;)e“} d/
%o

(MzsAl +MzzA2 +MznA3):| dl

— € [/ (x'BNZS + 6/37)(; V.) dl] e, = €5 Rp(v)e,.
%o

This completes the proof. [
We deduce the following consequences, which will be used in the subsequent sections.

Corollary 2. If v € K (A, .43, .43, .43) and aa_); € CY(¥), then a% € 2 and

ov ov
o) 0 () o
Corollary 3. If v € Ky(#],%3) and & € C'(¥), then

ov
o € K;(0, 45, —%#,0).

4. Deformation of open cylindrical shells

In this section, we shall determine a solution of the relaxed Saint-Venant’s problem for open cylindrical
shells. The solution that we are looking for must satisfy the boundary conditions on the lateral edges (3.8),
since the curve section %, is open.

Without loss of generality, we can choose the origin O of the Cartesian coordinate frame such that

/Oxxu(s)ds:O (2=1,2). @.1)

4.1. Extension, bending and torsion

We now confine our attention to the problem (P;), characterized by #) = 0.
Suggested by Corollary 2, we search for a solution v € K,(,@g, /M?, %g, ,/%2), v={u,d, ¢}, such that

Ou , 00 0o
g R, —— = D, ——=0 4.2
6x3 wrox ’ 6x3 @ ’ 6X3 ’ ( )

where #® and o are arbitrary constant vectors. We mention that any vector field {#, 5} of the form
i=u+wxR 0=o0xD, (4.3)
represents a rigid body displacement field of the Cosserat shell (see Naghdi, 1972, p. 463).
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Since D = A3 = n, from the relations (4.2) we find
Uiz = uf + €0 ;X 5a,3 = wsxé_, 53,3 = _wotx;v ¢, =0, (4~4)
where we have denoted by u; =u-e;, 6,= 6 - e;, u; = u" - ¢;, ;= - ¢; and ¢y, is the three-dimensional alter-

nator. By integrating the equations (4.4) with respect to x3;, we obtain

Uy = = €,pa5%3 — Ko€upxpxs + Wy(s),

2
Uy = €,pa,xp%3 + azxy + wi(s), 0, = koxx3 + {, (),

53 = —aax;)q + é/3(5)7 P = §0(S),

(4.5)

except for an additive rigid body displacement field of the form (4.3). The constants a; and k, that appear in
(4.5) are given by a, = w,, a3 = uj;, ko = w3 and the functions wys), {(s) designate arbitrary functions of
class C?[0,5]. In what follows, we shall determine a;, ko, w{s) and {,(s) such that the basic Egs. (2.15)-
(2.17) and the boundary conditions (3.6)—(3.8) be satisfied.

Let us introduce the notations

w(s) = wy(s)ey, §(s) = {,(s)ey,

(4.6)
we=w-1, w,=w-n, (=C(-1, (,=(n
From (4.5) and (4.6) we derive
1
u, = Ezzedﬁaﬁx; + kozeaﬁxmx% + Wy,
1
u, = Ezzaax; — kozx, X, + wy,  u, = z(€,pa.xp + az) + ws, (4.7)
5s = kOZ + Cw 571 = éna 52 = _Zaazx; + g}v P = QD(S)
In order to simplify the subsequent expressions, let us introduce the notations
ay = o5 + 0 + 07, Py = o5
Making use of the geometrical equations (2.15) and of the constitutive equations (2.16), we obtain
NSS = 0 (em,;aax,; + 03) — oc5aax;a’ + |og + 20(2 + 060(0/)2 (W/ . T) + Otoé’;O'/ + OCgC,, + ﬁ4§0,
N = (o + 200) (expanxp + as) + ouw' -t + al, + B0,
Ng = m(ko€apuxy +w3),  Vi=o3(w -n+{),
V. = o3(—kox.x, + (3), V, = oolepaxg+as+w 1)+ oul, + fso, (4.8)
My =og[o'(W 1) + ] —wsa,x,, M. =oas[d’(W 1)+ ] — oa,x),
M. = azko + o (koeupxoxyo’ + &), M. = ogko + o7 (Ko€upXaxyo’ + &),
M, = O‘Sa, + Bz(pla M, = Oa hs = ﬁzd, + ﬁl(o/v
hz = 07 g = ﬁ4(6aﬂa1xﬂ + as + W, : T) + ﬁSCn + ﬂ3(p
Then, the equilibrium equations (2.15)—(2.17) reduce to
d d d
7Nss = _OJVsa 7st = 07 1. VS = O-/NSS;
ds ds ds
d d d d (49)
_Mvs = Vsa _Msz = Vza _Msn = Vna _h: =&
s ds ds a8
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From the relations (4.9); 34 we deduce that

%(NsST +Vn)=0

and hence, there exist the constants B; (i = 1,2,3) such that
Ny=BxX,, V= eaﬂBax;J, M = e,3B,x5 + Bs. (4.10)
By using the Eqgs. (4.8); 4.7 and (4.10) we derive, after some calculations, that the following equality holds:
(ot 4 200) (W' - ) + 00, + Pap = —0t1 (€xpa,xp + a3) + By (X, + €paxp0’) — B3a'. (4.11)

In view of (4.8), we see that the equations (4.9), 5 are equivalent to
d ! ! & ! 4.12
3 (ko€upxsxly +wy) =0, % g (L3 — kox,x) = 0. (4.12)

Also, the equilibrium equations (4.9)s and (4.9); can be put, respectively, in the form
o0y + Br¢” — ol — Bsp — oo(W' - 7) = ay(espanx + a3),
Bl + Br19" = BsCw — By — Bs(W - 7) = Bu(esparxy + a3).

Let us impose that the boundary conditions on the lateral edges (3.8) be satisfied. Since Ny, = Vy= M ;=0
for s = 0,5, from (4.10) it follows that:

B,=0, i=1,2,3.

(4.13)

On the other hand, taking into account the relations N,, = M, =0 for s = 0,5 and (4.12), we obtain

ws(s) = —ky /OS EpxXpds,  (5(s) = koxx), — kop (s), (4.14)
where pi(s) denotes the function
o + oty o 5 - o3 s
pi(s) = \;m [cosh( %-2)} smh[ %<s—2>} (4.15)
The conditions M, = h; =0 for s = 0,5 are satisfied provided
G0) =) =0, ¢'(0)=¢'(s)=0. (4.16)

We observe that we can determine the functions (w’ - 7)(s), {,(s) and ¢(s) from the system of Egs. (4.11) and
(4.13), together with the conditions (4.16). Indeed, let y(,\(s), z,)(s) and @ ,(s)(y = 1,2) be the functions
defined on [0,s] that satisfy the equations

(o1 + 200)y,) + o0z() + Bap(,y = —oux,,
Ofszzly) + 52@’/((,) — ouz(y) — 5@y — 0oy, = 0o, (4.17)
Boz(,y + /31(/’/({,) = Bsziy) — B3@y — Baviyy = Baxy,
for s € [0,5],y = 1,2, and are subject to the conditions
2y(0) = z,,(5) =0, ¢, (0) = ¢[,,(5) =0, 7=1,2. (4.18)

We mention that the solution {y),z(), ¢} of the boundary value problem (4.17) and (4.18) is uniquely
determined and it can be computed with the help of the variation of constants method (see e.g., Reid, 1971).
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We denote by 4, B and I the constants that verify the system of equations
(o1 +202)A + 09B + 4 = —oy,
o9A + oyB + B = —a, (4.19)
BsA + BsB + B = —B,.

With these notations, the functions (w’ - t), {,, and gwhich satisfy the Eqgs. (4.11) and (4.13) (written with
B; = 0) and the conditions (4.16) can be expressed in the form

w T=a34 + €Y ()
§o = a3B + epanz(p), (4.20)
¢ = a3l + €pa,p ).
In the same time, from the Eqs. (4.8)47 and (4.10) , 3 we deduce that
L=—w-n, W -n=—Pfa,x.. (4.21)
With the help of the relations (4.20);, and (4.21) we determine the functions w,(s) and {,(s). The result is
wa(s) = Walail(s),  {o(s) = Za[ai)(s),
where the functions W,, Z, depend on the constants «; (i = 1,2,3) and are defined by

s

W, la](s) = azA (xa + ex/;/ x};ads) —a, [ﬁoea,;/ x'ﬂx}, ds + e/;y/ x;y(/;) ds
0 0 0

—€4p€s0 (X,g/ Y50 ds —/ XpY(5)0 ds)}, (4.22)
0 0
s
Z,|ail(s) = a3 (—Ax;o + Bedﬁxﬁ +a, (ﬂox;x«, + €up€y0XpZ () + eﬁ;,x;/ Yo' ds>.
0

In what follows, we shall find the values of the constants a; and k( such that the boundary conditions on the
end edges (3.6) and (3.7) be satisfied. By virtue of the relations N., = Ny, + ¢’ M., N,. = 0 and (4.9)s, we get

/ / s !l ! / g d /
/g (X Nos + €apxpV ) dl = /0 (x,0'M . + €pxV.)ds = /o e (€xpxyM ) ds = 0
0

and then the conditions (3.6); (written for ,%2 = 0) hold. The conditions (3.7) are also satisfied, since 4. = 0.
By integrating the equations (4.17) from s = 0 to 5§ we obtain

/ Vi ds=/ zmds:/ ¢pds=0, y=1,2. (4.23)
0 0 0

In view of (4.11), the condition (3.6), can be written in the form
20c2/ (€xpanxp +as —w -1)ds = —%5.
0

By substituting in the above relation (4.20);, we find
#

_ M' (4.24)

as

Since we have

N.. =2m(eupanxs +as —w -1), M, = (asfy — to)a,x,,
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the boundary conditions (3.6); are equivalent to
Lgag = MY, (4.25)

where we have denoted by 7,5 the expressions

5

[zx/i = (065,80 — O(())/ x;x}, ds — 20(26176/;5/ xy(x(; — y((;))ds. (426)
0 0
Finally, the condition (3.6)4 reduces to
/ (M. + M) ds = —.45 .
0

In view of (4.14), and (4.15), this relation becomes

/%2 _ og oy o3 S -
= — — tanh = .= ) 4.27
ko 2(otg + ot7) [s /0300 an o 2 ( )

Thus, we have obtained the following solution of the extension, bending and torsion problem for open
cylindrical shells

1
Uy = E%ﬁaﬁx§ — ko€upxpxs + Wlai(s),
Uz = €,payXpX3 + asxsz — ko/ E“ﬂxix;} dS7
A (4.28)
50( = kox;X3 + Zx[ai] (S)a
03 = —aax;m + koxax; — kop, (S)’
¢ = a3l + €30, (s)-

The constants a{i = 1,2,3) and k, that appear in the above relations are determined by (4.24)—(4.27). We
remind that the functions W,,Z, and p, are defined by (4.22) and (4.15), while ¢4, can be determined by
solving the problem (4.17) and (4.18).

The solution (4.28) of the problem (P;) will be denoted by v(a;, ko).

4.2. Flexure

We consider now the problem (P,), i.e. the case when %3 = .4 = 0.
In view of Corollary 3, it is natural to search for a solution v° = {u°,8° ¢°} of the flexure problem in the
form

W = / o(br, ) dxs + 0(B2, ko) + W, (4.29)
0

where b;, b? (i=1,2,3) and k, (« = 1,2) are constants, while w’(s) = {fi(s), go(s), Yo(s)} is a function of class
Cc? [0,5] which depends only on s. In what follows, we shall determine b, b?, k, and the unknown functions
£o(s), go(s), Wols) such that o° € K (29, %49).

Taking into account (4.2) and (4.29), we remark that % differs from v(b,, k1) only by a vector field of the
form {u, 3, 0}, where {u, 5} represents a rigid body displacement field of the Cosserat surface (see (4.3)).
Then, by virtue of Corollary 3, we have

v(bi, ki) € Ki(0, 45, — Y, 0). (4.30)
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Making use of the relations (4.24)—(4.27) written for the solution of the problem (P;) specified in (4.30), we
obtain

Lgby = €Ay, b3 =0, ki =0. (4.31)
With the help of (4.28), the equality (4.29) can be written in the form

1
+ —eaﬁbzxg — kaeupxpxs + X3 W, [bi](s) + Wa[b?](s) +f£(s),

1
Uy = 3 expbpxs 5

2
0y = koxpxs + 13 Zy[bi)(s) + Za[b]] (s) + 3(s),

1 y
U = = by pxs + pbxpxs + bxy — ks / €25, Xy ds + £2(s),
0
(4.32)
1
8N =- 2byx X3 — b2X x5 + kox,x, — kapy (s) + &3(s),
q00 = Gz/ibu(l’(/s) (8)x; + ewbggo(ﬁ) (s) + bgF + Yols),

where f(s) = f(s) - e; and g%(s) = g,(s) - e..
By virtue of the relations (4.32), (2.15) and (2.16), the equilibrium equations (2.17); 3 46,7 can be put in
the equivalent form

%{(m +20) (£ - 1) + (g - 1) + 000’ [ (fy - 7) + (80 - )] + Batho } + 050" (f - m+ gy 1) =0,
aaivg 1t gy 1) = 0 {01 +20) (- 7) + o0 (g - 1) + %00’ [0 (F - 7) + (80 - )] + Batho} =0,

d_[ a(fo-1)+ (go'f)/}_%(fé)'"‘f'go"f):m
og(gy - m)" + Poiy — oa(gy - m) — Psipy — oo (f(, - T) = 0,
Ba(go - m)" + By — Bs(go - 1) — By — Ba(fy - ) = 0.
(4.33)

Following a procedure already employed in Section 4.1, from the system of equations (4.33) together with
the conditions on the lateral edges:

Ny=V,=M,=M, =h,=0 fors=0,5,
we derive that
17(s) = g3(s) = Yo(s) = 0, (4.34)

where we have neglected a rigid body displacement field of the Cosserat shell.
The equilibrium equation (2.17), becomes

d o ,
A 3'(5) + X, W, [bi)(5)) + 2eubalxp — yig) = 0.
Taking into account the condition N = 0 for s =0, 5, from the above equation we find
f30(S) = / [ ] dS — 261/;17 / / X/; )] didf (435)

In order to determine g3(s), let us introduce the function py(s) defined by the equality
83(5) = po(s) — expxy W.[b](s). (4.36)
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In view of the geometrical and constitutive relations (2.15) and (2.17), we deduce that the equation of equi-
librium (2.17)s reduces to

aepq (s) — aspy(s) = (a6 + o7)by (X, + 60('3_)/(/)))0-/), s €[0,5]. (4.37)
The conditions on the lateral edges M,. = 0 are equivalent to the relations
, (o6 + 07) e (o6 + 07) - S
Po(0) = Tb Box(0), py(5) = _Tbo{ Boxx(5) — €xp A Yipo ds|. (4.38)

By solving the boundary value problem (4.37) and (4.38) we find the function po(s).

The solution v° must also verify the end edge conditions (3.6) and (3.7). We remark that (3.6); and (3.7)
are satisfied, by virtue of the relations (4.31); and (4.23), respectively. On the other hand, from the condi-
tions (3.6), 3 written for 9?(3) = %3 = 0 we obtain b? =0 (i=1,2,3). Finally, the end edge condition (3.6)4
written for ,ﬂo = 0 yields an equation for the determination of the constant k,. We find

k = {ZEQ/;b / / &)déds — Byb ,,/ x,xx ds
0

b, /0< ~3i0) / e (Om(©)dEds+ 12(0) - (o]}

x lzs _ 2(“"064\/%:7) tanh (\/Z_E - %)] 71. (4.39)

We conclude that the solution ° of the flexure problem for open cylindrical shells is given by

1
u(j = Eéaﬁbﬁxg — ka€upxpxs + x3 W, [bil(s),

1 N
uj = Eea,;bxxﬁxg — kz/o €x%oxp ds + £(s),

52 = kox) x5 + x3Z,[bi](s), (4.40)

1
3 = —gbax;)% + kaxyx), — €W [bi)(s) — kapy (s) + po(s),
<P0 = Eaﬂbaq’(ﬁ) (s)x3

5. Deformation of closed cylindrical shells

In the case of closed cylindrical shells, we denote by .7, the area bounded by the closed curve section %..
The length of the perimeter of the curve @, is 5 . Without loss of generality, the origin O of the Cartesian
coordinate frame is fixed such that (4.1) holds, while the arc parameter s along the closed curve € is chosen
such that

a(5) = a(0) + 2. (5.1)
Since u, 8, ¢ and their derivatives are single-valued functions, they satisfy the conditions
u(0,z) = u(s,z), 06(0,z) =6(5,2), ¢(0,2) = ¢(s,2),
du du oo o ) o (52)
@(0,2)1@(5‘,2), @(072):@(&2)5 @(072) ask (S Z)
where k= 1,2 and z € [0, /).
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5.1. Extension, bending and torsion

In order to investigate the problem (P;), we employ the same method as in Section 4.1. We search for a
solution v € KI(,%(;, ,/%?,/%3, %g), v={u,d,p}, such that (4.2) is satisfied. Then, we deduce the relations
(4.4)—(4.13), which hold true also in the case of closed cylindrical shells.

The conditions (5.2) imply that

w3(0) = ws(s), G(0) =G(5), G(0) =G(S). (5.3)
From (4.12) and (5.3) we obtain

s
W3(S) = 7](0/0 e“/fxux;;

where we have neglected an additive constant representing a rigid body displacement field.
We remark that the conditions (5.2) also yield

G0)=C0,6), G0)=C(6), ¢0)=06), @(0)=¢G). (5.5)
The system of equations (4.11) and (4.13) and the conditions (5.5) represent a boundary value problem for
the determination of the functions (w’ - 7)(s) , {,(s) and ¢(s). Indeed, let 4,B and C be the constants defined
by (4.19) and let us denote, in this section, by y,(s), z(s) and ¢, (s) (s € [0,5],7 = 1,2) the functions
which verify the equations (4.17) and the following conditions:

2)(0) = 26)(5), 2y (0) =2)(5),  9)(0) = @) (5),  9(,)(0) = () (5)- (5.6)

Also, let Fi;(s) , G;(s) and @;(s) (i = 1,2,3) be the functions defined on [0, 5] which satisfy the systems of
equations

G3(s) = koxax!, (5.4)

Gy + B @) — Gy — PsP) — a9F () =0,
ﬁzGl(li) + 51@, = BsGay = B3 @ — BaF ) = 0, (5.7)
((Zl +20(2)F(1 +och, +ﬂ4 o x +6/;1x,f0' (OC = 1,2),

(o1 + 200)F3) + G 3; + ., E}i a’
together with the boundary conditions

G»(0) = Gy(s), G,(0) = G[,(s), 58)
P(0) = Dp(s), P(,(0) = Df(s) (i=1,2,3).

We mention that the functions y(,), z;), @), £y, G;) and @, exist and are uniquely determined (see e.g.,
Reid, 1971). With the help of these notations, the solution of the problem (4.11), (4.13), (5.5) can be written
as follows:
w - 1=a34 + €upaay(p) + BiF ),
{, = asB + eypa,z(p) + B,G, ), (5.9)
Q= a3F + fal;aa(p(m + Bl¢(,>
In an analogous manner as in Section 4.1, we derive the relations

= —w -n+ a;ledﬂde}g, (5 10)
W" n = —ﬁoaax; — O(al(elﬁlelg +B3) + OC;IBQ(X;O',. .

In view of (5.9),, and (5.10), we can determine w,(s) and {,(s). We obtain
wa(8) = Ugylas, Bi](s), C.(s) = Y,[ai, B](s), (5.11)
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where the functions U, and Y, depend on the constants «;, B; and are defined by

U,la;, Bi](s) = az4 (xa + 61/;/ x%ads)
0

s s s s
—a, {ﬁoexﬁ/ xpx, ds + e, / XV ds — €xps0 (x,;/ Vo0 ds — / XV(5)0" dS)}
0 0 0 0
s s N s
+ B,oy eupess </ xpxsds — xg / x5 ds + ooy ! / XX ds) + B30y ey (/ xpds — sx,;)
0 0 0 0
+B,- (/ x;F@ dS+ Ea/;)C/;/ F(,->o"ds — 69(/;/ x/;F(,-)a’ds),
0 0 0

Y,lai, Bil(s) = a3 (Beo(/;x;j — Ax,0) + a, <ﬂ0x;x, + edﬁey(;x'ﬂzw) — ey(;x;/o y(5>g’ ds)

— Bwl,oc(jle/;.,x;/o xpds + Bg,oc(jlsx; + B; <exﬁx;3G(i) —x, /0> Fo' ds). (5.12)
We remark that the conditions (5.2) are satisfied if and only if the following relations hold:

CA(O) = CX(E), ch(o) = Wa(j)v a=12. (5'13)

Taking into account (5.11) and (5.12), the equalities (5.13) reduce to the following conditions on the con-
stants a; and B;:

az2nA + alew/ y(ﬁ)(;’ ds —i—B,—/ F(,-)(,—’ ds — B3(xal§ =0,
0 0 (5.14)

U,lai, Bi)(0) = U,a;, Bi](5).

The end edge conditions (3.6) and (3.7) must also be satisfied. In the same way as in the case of open cylin-
drical surfaces, we find that (3.6), and (3.7) are verified.
By virtue of (4.11) and (5.9),, the equality (3.6), can be written in the form

az[20,(4 — 1)3] +BocA€ﬁoc/0 x50’ ds — B32nd = 9. (5.15)

By substituting the appropriate constitutive relations into (3.6);, we deduce

s s
I,_ﬁa[; — B), |:ﬁ06/;y / X;Xﬁ ds + €xp / x/;(x; + 657)650/) ds
0 0

s

+B3eaﬁ/ xp0’ ds + Bi(20a€, / xpF(ds) = /%2, (5.16)
0 0

where I,; represents the notation introduced in (4.26).
The relations (5.14)—(5.16) form a system of six algebraic equations for the determination of the con-
stants ¢; and B; (i=1,2,3).
The value of the constant ky can be computed from the end edge condition (3.6)4. After some calcula-
tions, we find
4 -1
ko = —AM" azzgﬂi +2(06 + 7)5| . (5.17)
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In conclusion, we have obtained the following solution of the extension, bending and torsion problem for
closed cylindrical shells:

U, = EQM/M% — koeupxpxs + U,la;, Bil(s),

y 2.9,
= €opldy —k ofro d ko—= )
us EaplaXpXs + asx; 0‘/0 EapX Xﬁ s+ Ko 3 s (518)

0y = koxX, x5 + Y,[a;, Bi](s), 03 = —a,x,x3 + kox,x),
¢ = asl" + €0, (s) + Bi®;(s).

5.2. Circular cylindrical shells

In this section, we apply the theoretical results established previously and find the solution of the relaxed
Saint-Venant’s problem for closed circular cylindrical Cosserat surfaces.

We denote by R, the radius of the cylindrical shell in the reference configuration .. The parametric
equation of % is given by (2.12), where

x1(s) =Ry cosi, x2(s) =Ry sini, s € [0,27Ry). (5.19)
Ro Ro

Then, from the relations (2.13) and (2.14) we deduce that
n

5 (5.20)

X, = =Ry e,pxp, X! = —Ry%x,, o(s)=R,'s+

o

We consider the problem (P;) (i.e. 9?2 = () as a particular case of the problem solved in Section 5.1. Taking
into account (5.18)—(5.20) the solution of the extension, bending and torsion problem for circular cylindri-
cal shells is given by

U, = EG#;(,Z;;X% — koﬁa/;x,;m — (A*e/ﬁ,a/jxy + a3Ao)x1,

uy = (€xpttoky + a3)x3, (5.21)
51 = —Ral [(D*ayxy + kOX3)eaﬁx,; + (B*em.a,;x., + a3BO)x1],
03 = Rale“ﬁa“x/;x% P = —(C*eo,_ﬁa“xﬁ + a3C0).

Here, the constants ¢; and k, have the following values:

M R, 2\
= ——, =— 200 + Ao | 200 + — ,
“ETIRE P T T 2R, { 2 0( 2 Rﬁ)]

A (5.22)

M _
k():— 7'[3 [O(zR(Z)+2(OC6+OC7)} 1.

In (5.21) and (5.22), the notations 4,, By, Cy and A°, B, C" represent constants which are determined,
respectively, by the systems of equations
(011 4 206 + atgRy %) Ao + 9Bo + B4Co = 011,
oAy + ouBo + BsCo = a, (5.23)
Bado + BsBo + B3Co = Pu,
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and
oo 2063005
oy + 200 + A"+ ogB" + B, C" =) + ———,
( 1 2 OCo+OC3Ré) 9 Bs 1 0<o+O€3R§
* -2\ p* -2 % (524)
a9A” + (oa + 05 R “)B" + (Bs + oRy ") C™ = o,
Bad” + (Bs + BoRy*)B' + (B3 + BiRy*)C™ = i,
while the constants D* and E* are specified by
Df = [(OC3R(2) — O{())A* + 0!5] (OC() + OC3RS)71,
o 2030 o doryol o 5.25
E*<2a2+—27352>+<212—52+7032>A*—SZD*. (5-29)
RO oy + OC3RO RO oy + O(3Ro RO

We denote the solution (5.21) of the problem (P;) by v(a;, ko).

In what follows, we consider the flexure problem (characterized by J72‘3) =M ? = 0) with respect to closed
circular cylindrical shells. We search for a solution 1° € KH(%?, %3), 0 = {u°,6°, qoo}, such that 1° is of the
form (4.29).

By using the same method as in Section 4.2, adapted for closed circular cylindrical surfaces, we finally
obtain the following solution of the problem (P»):

u) = Le,ubpy + A e byxpxaxs, s = epbxp(h + K7,
52 = Ralb},(B*eﬂ,,xﬁxx — D*ex/;x[;xy)x% 5(3) = Ralealgbxx,;(%xg + L*), (526)
o’ = Ceupbpxyxs.

The constants b, are given in terms of #° by the relations

s R
o= [;3 /i’ = 172 (5.27)
TRy E
In (5.26) we have denoted by K* and L* the constant expressions
K =2R|1+ 4"+ 2 —D*)} L' =R [M(l +AT) + D (5.28)
25 O + (Z3R0

6. Remarks and comments
6.1. Properties of the solutions

(i) We observe that the solutions v and v° determined in Sections 4 and 5 possess some of the character-
istic properties of Saint-Venant’s solution from the classical theory of elasticity.

Indeed, we see that (4.28) and (5.18) are the solutions of the problem (P;) which satisfy the conditions
(4.2). Also, we remark that v° given by (4.40) is the solution of the flexure problem which can be represented
in the form (4.29). These representations of the solutions are analogous to those established by Iesan (1987)
for the classical Saint-Venant’s solution.

We notice that the stress fields /N, M and / are independent of the axial coordinate z in the case of the
extension-bending-torsion problem (see (4.8)), while for the flexure problem the stress fields NV, M and &
depend linearly on z. This property corresponds to the characterization of Saint-Venant’s solution given
by Voigt (1887).
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Clebsch (1862) has proved that Saint-Venant’s solution can be distinguished among all the solutions of
the relaxed problem by the property that the stress vector on any plane normal to the cross-sections of the
cylinder is parallel to its generators.

Let us compute the contact force /N acting on a straight line normal to the plane x;Ox,. Since
N, = V=0 in the case of open cylindrical surfaces, we have N = N .es. Hence, NV is parallel to the gener-
ator and we find a property of the solution analogous to Clebsch’s characterization.

In the case of the problem (P;) for closed cylindrical shells, we obtain that N = B,e, + N,.e5. Thus, the
vector N is parallel to a fixed plane which is parallel to the generator and NV has a constant projection on the
plane x;Ox>.

(i1) From the results of Sections 4 and 5 we can deduce separately the solutions for the extension problem
(characterized by #° = .#"=0), the bending problem (%’ = .43 =0) and the torsion problem
(R = M =0).

In view of (4.24)—(4.27) and (5.14)—(5.17), we observe that the torsion deformation uncouples from the
extension and bending of cylindrical Cosserat shells with voids. Moreover, for open cylindrical shells,
extension and bending are also uncoupled.

Taking into account the expressions of the solutions obtained, we observe the interaction between the
displacement fields and the porosity field. Indeed, the displacement # and the director displacement d are
influenced by the porosity of the material, while the volume fraction field suffers changes due to the defor-
mation of the shell.

In the case of the torsion problem we have a; = B; = 0. Hence, the solutions (4.28) and (5.18) reduce to
the results obtained by Wenner (1968) for the torsion of cylindrical shells. Wenner (1968) has shown that
these results are in agreement with the work of Reissner (1959), which deals with the classical theory of
shells.

We remark that the torsion of cylindrical shells with voids has no effect on the porosity, since ¢ = 0.

(iii) The case of Cosserat shells made from an elastic material which is not porous is characterized by the
relations

0=0, B,=0 (k=1,...,5). (6.1)

If we substitute (6.1) into the appropriate equations derived in this work, then we obtain the solution of the
relaxed Saint-Venant’s problem for Cosserat shells (without voids). Birsan (2004) has studied this problem
in detail and has deduced its solution.

In what follows, we investigate the correspondence between the solution of Saint-Venant’s problem in
the theory of Cosserat shells made from an elastic material and the analogous results from the classical the-
ory of shells.

6.2. Comparison with corresponding results from the classical shell theory

We consider cylindrical shells made from an homogeneous and isotropic elastic material, modelled as
Cosserat surfaces. Since the shells are not porous, the volume fraction field is constant # = 1 and (6.1) holds.
Let 4, u be the Lamé constants, E is Young’s modulus and v designates Poisson’s ratio for this elastic mate-
rial. We denote by ( the constant thickness of the shell and let

E¢ EC

=y D_12(1—v2)'

In Naghdi (1972), Section 24, the constitutive coefficients a;,...,% have been determined in terms of v,
C and D. Thus, we have
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v(l—v I—v 1—v)°
= f—zv) =6 O“‘:(1—21 ’ 62)
s = vD, zx6:oc7:1;vD,
while the coefficients o3 and og remain unspecified and have the orders of magnitude
o3 = O(C), ag = O0(D). (6.3)

In view of (6.1)(6.3), we deduce that o= D, fy=v, A= B = —v. From the boundary-value problems
(4.17) and (4.18), (5.6)—(5.8) we obtain

Vi = —VX + 0(), zwm=-v,+0(), a=1.2 (6.4)

and also (in the case of closed cylindrical shells)

1 / / v / /
Fo =50 +epxpo’) +00), G = e v)c(xu + epuxpa’) + O(0),
6.5)
L v (
F(3):_EG +O(£)v G(3):(1—V)C6 +O(£)v

while I', ¢, and ®; do not arise.

Remark. For a slightly less general theory of Cosserat shells (also discussed in Naghdi, 1972, Section 24) we
have ag = 0. Hence, M* is absent. In this type of linear theory, which already includes the linear theories of
shells currently employed in the literature, the relations (6.4) become y(,) = z,) = —Vv X, and (6.5) can be
written in a simpler form, by dropping the terms O({).

Introducing the formulae (6.1)—(6.5) into the appropriate expressions of the solutions derived in Sections
4 and 5, and neglecting some terms of orders O((%), O(Z*) or O(¢*), we obtain the approximate solution of
Saint-Venant’s problem presented below.
For the extension-bending-torsion problem, the displacement field is given by
1

U, = Eﬁaﬁa/{(xg —vx,x,) — v(egapx, + a3)x, — koeypxpxs + Syla;, Bi(s),
;

» (6.6)
Uz = (Exﬁaa)(ﬁ + Cl3))C3 — k()/ ea/;xyx;; ds + Ek()
0

c
— .
s

Here, ¢ is a parameter which is set to be ¢ = 0 for open cylindrical shells, whereas ¢ = 1 for closed cylindrical
shells. Thus, by using the parameter &, we are able to write the solution for both open and closed cylindrical
shells in a single formula.

In (6.6) we have denoted by S,[a;,B;](s) the function

s 14 1
Sylai, Bi](s) = / e/mx};/ [v(ey(;a.),x(; + az)o’ —|—B (€,6B,x5 + B3) | dtd¢, (6.7)
0 0

where a; and B; are constants and s € [0, 5].
The constants ko and a{i = 1,2,3) can be expressed in terms of the resultant axial force %%, bending mo-
ments ,/%2 and twisting moment ,/%2 acting on the end edges of the cylindrical shell, by the relations

00
’23

a3 = ——=,
3 E(s

(6.8)

/x ds = ey (6.9)
€p,a XXy AS = €, 5 .
By o y B E(
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ky=-—"2. (6.10)
In (6.10), D denotes the constant

D= 1C3§ for open cylindrical shells,
3
: (6.11)
D=4 geszii for closed cylindrical shells.

As we know from Section 4 , we have B;= 0(i = 1,2, 3) for open cylindrical shells. On the other hand, for
closed cylindrical shells the constants B; can be determined in terms of a,(i = 1,2,3) from the relations

B 5 5
eﬁyBﬁ / x,x,ds = —v/ (eg,apx, + az)x,a’ ds,
0 0 (6.12)

&E = —v/ (eg,apx, + az)o’ ds.
D 0
(These equations are equivalent to the conditions S,[a;, B|(5) = S, [a;, Bi](5) = 0.)

We observe that the constants a3, a, and kg, respectively, represent measures of stretch, curvature and
twist of the cylindrical shell considered as a beam. Thus, the relations (6.8)—(6.11) coincide with the classical
results given in Reissner and Tsai (1972) (for the case of an isotropic material). The same results can be
obtained from the work of Berdichevsky et al. (1992) for the case of isotropic thin-walled closed-cross-
section tubes (see also Ladeveze et al., 2004). We mention that the torque-twist relations (6.10) and
(6.11) are established in Timoshenko and Goodier (1951), Sections 94, 98, 102 and in Sokolnikoff
(1956), Section 47. The problem of Saint-Venant torsion of thin-walled tubes is also discussed in Reissner
(1970).

The displacement in the axial direction u; given by (6.6), coincide with the results obtained from the
work of Reissner and Tsai (1972) for isotropic materials. Also, the components u, of the displacement vec-
tor for open cylindrical shells have the same form as the solution found by Reissner and Tsai, except for the
term S,[a;,B;](s) which appears in (6.6);. As we will show later, the term S,[a;, B;|(s) vanishes for initially flat
shells (i.e. plates) and for circular closed cylindrical shells, so that the displacements u, correspond exactly
to the results of Reissner and Tsai for these cases.

In the same way, using the relations (6.1)—(6.5) and the results of Sections 4 and 5 we find that the
approximate solution of the flexure problem is

0 1

u, = s€,pbpxs (%x% —vx,x,) — V(epbpx, )xaxs — ka€upxpxs + x38.[bp, 0, Gl (s),

U = S(eupboxp)s + 3vx7 (b1xa — §hox1) + 33 (30132 — box)

N N s ¢
— kz/ e“/;xdx;; ds — v/ (byxixy, — byxax))ds — 2(1 +v) / / (€xpbyxp)dTdé (6.13)
0 0 o Jo

1+v

© c

— &

s/ (eiﬂx;xﬁ)/ eq/.(;byx(;dfds—i—/ x.,S,[bg, 0, C;]ds.
0 0 0

The constants b,(x = 1,2) can be expressed in terms of 9?2 from the system of algebraic equations

b § d 7, 6.14
€y ﬂ/o XoXy s__E_C’ (6.14)
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while the constant k, which appear in (6.13) has the following value:

E s s
k2 = —E / (ea,;x;x/;) / ev(;b),x(; dé ds
D Jo 0

¢ [v/ (blx%xlszzxgx’l)derZ(l+v)/ /(eaﬂbaxﬂ)dfdsf/
29 . 0 o Jo 0

The constants Cfi = 1,2,3) are set to be C; =0 for open cylindrical shells, whereas for closed cylindrical
shells C; are given in terms of b, by the relations

C 5 5
eﬁ,Eﬁ i X,x,ds = —v/o (€p,bpx, )x,0" ds,

5

x,S,[bg,0,C}] ds]. (6.15)

. (6.16)
Cs_ ’ /
5= —v/o (eg,bpx,)o’ ds.

In what follows, we particularize the above results for the cases of initially flat cylindrical shells (i.e. rectan-
gular plates) and circular closed cylindrical shells.

Consider first the deformation of rectangular plates, as a special case of the problem solved in Section 4,
with

xi(s) =s—1y, x(s)=0, s€]l0,2). (6.17)

If we substitute (6.17) into (6.6), then we obtain the following solution of the extension-bending-torsion
problem:
1

u = iaz(xg + vx%) — vaszxy,

1 1
Uy = —§a1(x§ — vxf) + kox1x3, (6.18)
Uz = —arX1X3 + asxs.

In the case of plates, the constants a, can no longer be computed from the approximate relations (6.9), since
the determinant of the system is null. Instead, by using directly (4.25) and (4.26) we deduce

1 2
Iy :—EZOECS, 122:—5131’757 I =15 =0,
so that
6.4" 3.9
611:——13, a) = — 3 2. (619)
1EC 2I0EC
From (6.8) and (6.10) we get
2° W
ay = % ko = 35 . (6.20)

C2EC T 2l

The solution (6.18)—(6.20) coincides with the result presented by Reissner and Tsai (1972) for plates, when
the elastic material is isotropic.
In view of (6.13) and (6.17), for the flexure problem we obtain the following displacement field:

ud) = 1byx3 (%x% +wx?),
2w, (621)
0

_ 2+4v 3 1 2 2
Uz = szxl — §b2x1x3 — (1 + V)bzloxl.

0_ 1 1
uy = —5b1x3(3x
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Here, b, are given by

6% 3R°
b] - 2 b2 - - 3 ! .
2IEC

v (6.22)

The flexure problem for plates has also been studied by Timoshenko and Goodier (1951), Section 20, in the
case when %) # 0, %9 = 0, and the result is the same as in (6.21) and (6.22).

Let us consider now Saint-Venant’s problem for circular closed cylindrical shells. In this case, the func-
tions x,(s) are given by (5.19) and we notice that S,[a;, B;])(s) = S.[bg,0, C;])(s) = 0. Then, from (6.6) and
(6.8)—(6.11) we deduce the solution of the extension-bending-torsion problem

! 2 —y( +a3) k
U, = =€ papx; — V(eg,apx, + az)x, — ko€,pxpxs,

5 CappXs pyapXy + a3 0€2pXpX3 (6.23)
uz = (€ypanxp + az)xz,

where
X MY M
=——3 _ g, =——"% ky=- 3 6.24

BT ToaREC T T RREC T T 2Rl (6.24)

The same solution (6.23) and (6.24) is obtained from the results of Reissner and Tsai (1972).
From (6.13) and (6.14) we deduce the following solution of the flexure problem for circular closed cylin-
drical shells:

u) = Le,ubyx; — v(egbyx, )x,xs,

(6.25)
uf = (epbaxp)[3x3 + 2(1 + v)RY),
where
0
L (6.26)
TRIE(

Remark. The solution (6.23)—(6.26) of Saint-Venant’s problem for circular cylindrical shells can also be
obtained directly from the results of Section 5.2, if we use relations (6.1)—(6.3) and then make some
approximations, by neglecting terms of order 0((2).

We close this section by observing the analogy between the solution (6.6)—(6.13) for cylindrical shells and
the classical Saint-Venant’s solution for solid cylinders.
In order to make this analogy more visible, we adopt the notations

L_la = €padp, Ba = 6/5abﬁ,

and introduce the functions
s 254,
o(s) = —/0 ExpXo Xy ds + £S5,

W(s) = —v [/ (b1x)x5 + baxhxi) ds — 6> / (b1 x5 + byx)x?) ds}
0

s Jo
s 14 5 14
2(1+v)</ / Baxadrdé—si/ / bdxxdrdf).
0o Jo s Jo Jo



2056 M. Birsan | International Journal of Solids and Structures 42 (2005) 2033-2057

Then, the solution (6.6)—(6.13) of Saint-Venant’s problem can be written in the form
—1b,x3 (%x% — vxpxg) — vhypxpx,xs — 1a, (x5 — vxpxg)
— V(Zzﬁxﬁ + 613))6Ot — (k() + kg)ea/;x,;n + Sm[al—,B,-] +X3Sz[b/;, O, C,—],

uy = 1b,x,05 + dx] (3byxy + baxa) + i3 (Bixy + 1boxy)

Uy =

s (6.27)
+ (Zz,_xa -+ a3)x3 -+ (ko -+ kg)(Z) + lp -+ / X;Sx[b/;, O, C,] dS
0

— el / x.S,[bg, 0, C;]ds.
S Jo

Except for the terms containing S, , the displacement field (6.27) has the same form as the well-known
Saint-Venant’s solution for solid cylinders. The function @(s) represents the torsion function associated
to the deformation of cylindrical shells.

The analogy with the classical Saint-Venant’s solution can be extended also to the relations between the
constants a,, as, b,, ko appearing in (6.27) and the resultant forces and moments .%?, %? Without loss of
generality, we can choose the Cartesian coordinate system such that the origin is at the centroid, with
the coordinate axes being principal axes, i.e. we assume that (4.1) holds and that f(; x1x,ds = 0. Then,
the relations (6.8)—(6.10) and (6.14) become

alE(C/ x%ds) =5, a2E<C/ x%ds) =",
0 0

WE((S) =~ ko(uD) = —45, (6.28)

l_)lE(C/ x%ds) =9, 52E<C/ x%ds) =B
0 0

These relations are analogue with the well-known Saint-Venant’s formulae for bending, extension, torsion
and flexure, respectively. Indeed, in (6.28) the product (s corresponds to the area of the cross-section X of
the three-dimensional cylindrical shell, whereas the expression { fo x2ds is the analogue of [ X5 2ds(o = 1,2).
The quantity uD represents the torsional rigidity of the (open or closed) cylindrical shell.
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