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Abstract

In this paper we investigate the mechanical behavior of Cosserat shells made from a material with voids. We formu-
late Saint-Venant�s problem for cylindrical shells and determine the solution of the relaxed problem. Then, we apply the
theoretical results to study the deformation of circular cylindrical shells. We also compare the solution of Saint-
Venant�s problem for Cosserat shells with corresponding results from the classical theory of shells.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The torsion of elastic cylindrical shells modelled as Cosserat surfaces has been studied by Wenner (1968).
A Cosserat surface is a two-dimensional continuum with a deformable vector (called director) assigned to
every point of the surface. For a detailed presentation of the theory of shells described as Cosserat surfaces
we refer to the monograph of Naghdi (1972). In the last decades, the theory of Cosserat shells has received
considerable attention and has been investigated by many scientists (see e.g., Steele, 1971; Rubin, 1987;
Antman, 1995; Steigmann, 1999). In the monograph of Rubin (2000) several applications of the Cosserat
theories are described. An interesting application of Cosserat shells for the modelling of interphases in elas-
tic media has recently been presented by Rubin and Benveniste (2004).

In the present paper, we extend the results of Wenner (1968) and consider the deformation of Cosserat
cylindrical shells made from a material with voids (also called pores). Moreover, in addition to the torsion
problem, we also investigate the extension, bending and flexure problems for porous cylindrical shells. In
the case when the porosity is zero, we find the same solution for the torsion problem as the one obtained by
0020-7683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Wenner, with the help of a different method. We mention that the solutions of the extension, bending and
flexure problems for the case of Cosserat shells which are not porous have been deduced previously by
Bı̂rsan (2004).

For our purpose, we employ the theory established by Nunziato and Cowin (1979) and Cowin and
Nunziato (1983) for elastic materials with voids. In this theory, the bulk density is written as the product
of two fields: the matrix material density field and the volume fraction field. Thus, an additional degree of
kinematical freedom is introduced. Capriz and Podio-Guidugli (1981) have shown that the Nunziato–
Cowin theory for elastic materials with voids can also be regarded as a particular case of the theory of
media with microstructure. In the last twenty years, there has been much written on the subject of elastic
materials with voids (see e.g., Capriz, 1989; Ciarletta and Ies�an, 1993). Several results concerning the theory
of Cosserat shells made from a material with voids have been established by Bı̂rsan (2000). The Nunziato–
Cowin theory was also employed to investigate the bending of thermoelastic porous plates in Bı̂rsan (2003).

The first part of this article contains a review of the basic equations that govern the equilibrium of Coss-
erat shells made from an isotropic material with voids, in the context of the linear theory. Then, we formu-
late Saint-Venant�s problem for cylindrical shells. In Section 4 we determine the solution of the relaxed
Saint-Venant�s problem for the case of open cylindrical surfaces. To this aim, we employ a method estab-
lished by Ies�an (1986, 1987) in the context of the classical theory of elasticity and we separate the relaxed
problem in two parts: the extension-bending-torsion problem and the flexure problem. In Section 5 we
study the corresponding deformations of closed cylindrical shells. Then, we use the theoretical results to
determine the solution for circular cylindrical shells. In the last section, we compare the solution of
Saint-Venant�s problem for Cosserat shells (in the non-porous case) with the corresponding results from
the classical theories of shells and plates. Also, we observe an interesting analogy with the classical
Saint-Venant�s solution from the three-dimensional theory of elasticity.
2. Basic equations

Naghdi (1972) has discussed the theory of shells modelled as Cosserat surfaces. The theory of thermo-
elastic Cosserat shells with voids was presented by Bı̂rsan (2000).

In the present paper we confine our attention to the isothermal linear theory for Cosserat shells with
voids and we begin with a review of the basic equations. We mention that this theory is exact, in the sense
that it involves no approximations, beyond those already assumed by the linearity of the theory.

2.1. Cosserat shells with voids

LetS be the reference configuration of a Cosserat surface. We consider a curvilinear material coordinate
system ha (a = 1,2) onS and assume that (h1,h2) 2 R, where R is an open bounded set of R2. The surfaceS
is defined by an injective mapping R of class C2 from R into the Euclidean three-dimensional space. We
denote by r(ha, t) the position vector and by d(ha, t) the deformable director assigned to the material point
of the surface S which coordinates are (ha) at time t. The motion of the Cosserat surface is defined by
r ¼ rðha; tÞ; d ¼ dðha; tÞ; ðhaÞ 2 R; t 2 T; ð2:1Þ

where T is a time interval. Let R(ha) and D(ha) be the position vector and the deformable director, respec-
tively, in the reference configuration.

We consider the covariant base vectors along the ha-curves and the unit normal to the surfaceS defined by
Aa ¼
oR

oha
ða ¼ 1; 2Þ; A3 ¼

A1 � A2

j A1 � A2 j
: ð2:2Þ
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Let us denote by Aab and Bab the first and second fundamental forms of the surface S
Aab ¼ Aa � Ab; Bab ¼ Bba ¼ �Aa � A3;b ¼ A3 � Aa;b;
where a subscript comma represents partial differentiation with respect to the surface coordinates (ha).
Throughout this paper we employ the usual summation convention. The Latin subscripts are understood
to range over the integers 1,2,3, whereas Greek subscripts are confined to the range 1,2.

We remind that in the Nunziato–Cowin theory of materials with voids the mass density q has the
decomposition
q ¼ gc;
where c is the density field of the matrix material and g is the volume fraction field (0 < g 6 1). In the ref-
erence configuration we have q0 = g0c0.

The infinitesimal displacement u, the director displacement d and the change in the volume fraction field
u are defined by
u ¼ r� R; d ¼ d �D; u ¼ g� g0:
We designate by ui and di the components ui = u Æ Ai, di = d Æ Ai.
We confine our attention to elastic porous shells with constant thickness in the reference configuration.

According to Naghdi (1972,p. 447), this class of shells is characterized by the fact that the reference director
coincides with the unit normal to the reference surface, i.e. D = A3.

The linear strain measures eab, ci and qia satisfy the following geometrical equations:
eab ¼ 1
2
ðuajb þ ubjaÞ � Babu3; ca ¼ da þ u3;a þ Bb

aub;

c3 ¼ d3; qba ¼ dbja � Bc
aucjb þ Bc

aBbcu3; q3a ¼ d3;a;
ð2:3Þ
where a subscript vertical bar stands for covariant differentiation with respect to the metric tensor Aab.
Let c be an arbitrary curve onS and let N,M and h be the contact force, the contact director couple and

the equilibrated stress, respectively, acting per unit length of c (see Naghdi, 1972). Then, we have the fol-
lowing relations of Cauchy type:
N ¼ Nama; M ¼ Mama; h ¼ hama; ð2:4Þ

where m = maA

a represents the unit normal to c tangent to the surface S.
We define Nab,Va and Mai by the relations
Na ¼ N abAb þ V aA3; Ma ¼ MaiAi ð2:5Þ

and we introduce the notation N 0ab for the following expression:
N 0ab ¼ N ab þ Bb
cM

ca: ð2:6Þ
The equations of equilibrium for porous Cosserat surfaces are
N ab
ja � Bb

aV
a þ q0f

b ¼ 0; V a
ja þ BabN ab þ q0f

3 ¼ 0; ð2:7Þ

Mab
ja � V b þ q0l

b ¼ 0; Ma3
ja � V 3 þ q0l

3 ¼ 0; ð2:8Þ

ha ja � g þ q0p ¼ 0: ð2:9Þ
In the relations (2.7), (2.8) the field quantities per unit mass fi and li stand for the components of the as-
signed force and assigned director couple, respectively. In the equation of equilibrated force (2.9), g repre-
sents the intrinsic equilibrated body force per unit area and p is the external equilibrated body force per unit
mass.
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The constitutive equations for homogeneous porous Cosserat shells possessing holohedral isotropy (i.e.
isotropy with a centre of symmetry, see Naghdi, 1972, Section 13c) are the following:
N 0ab ¼ ½a1AabAcd þ a2ðAacAbd þ AadAbcÞ�ecd þ a9A
abc3 þ b4A

abu;

V a ¼ a3A
abcb; V 3 ¼ a4c3 þ a9A

abeab þ b5u;

Mbc ¼ ða5AabAcd þ a6A
acAbd þ a7A

adAbcÞqcd;

Ma3 ¼ a8A
abq3b þ b2A

abu;b;

g ¼ b3uþ b4A
abeab þ b5c3; ha ¼ b1A

abu;b þ b2A
abq3b;

ð2:10Þ
where a1, . . .,a9 and b1, . . .,b5 are constant constitutive coefficients.
In this paper, we consider static deformations of homogeneous and holohedral isotropic Cosserat shells

subject to boundary conditions of the form
N ¼ eN ; M ¼ fM ; h ¼ eh on oS; ð2:11Þ

where eN ; fM and eh are prescribed functions.

2.2. Cylindrical Cosserat surfaces

In this section we deduce the basic equations for cylindrical Cosserat surfaces made from a material with
voids.

Let us assume that the reference configuration S of a Cosserat shell is a cylindrical surface. We consider
a rectangular Cartesian coordinate frame Ox1x2x3 such that the generator of the surface S is parallel to
Ox3 and S is situated between the planes x3 = 0 and �h. We denote by Cz the curve section of the surface
perpendicular to the generator, lying in the plane x3 = z. On the surface S, we choose the curvilinear coor-
dinates h1 = s, h2 = z, where s 2 ½0;�s� is the arc parameter along the curve Cz and z = x3, with z 2 ½0; �h�. The
parametric equation of the surface S is
R ¼ Rðs; zÞ ¼ xaðsÞea þ ze3; s 2 ½0;�s�; z 2 ½0; �h�; ð2:12Þ

where ei represent the unit vectors along the axes Oxi. The curves Cz are assumed to be simple (open or
closed) curves of class C3. The unit tangent and normal vectors to Cz are given by
sðsÞ ¼ x0aðsÞea; nðsÞ ¼ �abx0bðsÞea; ð2:13Þ
where �ab is the two-dimensional alternator defined by �12 = ��21 = 1, �11 = �22 = 0 and we use the notation
( ) 0 = d( )/ds. The following relations take place:
A1 ¼ s; A2 ¼ e3; A3 ¼ n;

x00aðsÞ ¼ �bax0bðsÞr0ðsÞ; r0ðsÞ ¼ 1

RðsÞ ¼ �abx0aðsÞx00bðsÞ;

Aab ¼ dab; B11 ¼ � 1

RðsÞ ; B12 ¼ B21 ¼ B22 ¼ 0;

ð2:14Þ
where dab is the Kronecker delta, R(s) denotes the curvature radius of Cz and r(s) designates the angle be-
tween the vectors s(s) and e1. We observe that the Christoffel symbols associated with the surface S are all
zero: Ck

ab ¼ 0. Thus, the physical components of any tensor coincide with the covariant and with the con-
travariant components of the same tensor (see Naghdi, 1972, Section A.4). Taking into account that h1 = s,
h2 = z and A3 = n, in what follows we shall write the subscripts s, z and n instead of the indices 1, 2 and 3,
respectively, for the components ui, di, eab, ci, qia, N

ab, Vi, Mai and ha of the tensors defined in Section 2.1.
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Then, the geometrical relations (2.3) become
ess ¼
ous
os

þ un
RðsÞ ; ezz ¼

ouz
oz

; esz ¼ ezs ¼
1

2

ous
oz

þ ouz
os

� �
;

cs ¼ ds �
us
RðsÞ þ

oun
os

; cz ¼ dz þ
oun
oz

; cn ¼ dn;

qss ¼
ods
os

þ 1

RðsÞ
ous
os

þ un
R2ðsÞ

; qzz ¼
odz
oz

; qsz ¼
ods
oz

;

qzs ¼
odz
os

þ 1

RðsÞ
ous
oz

; qns ¼
odn
os

; qnz ¼
odn
oz

:

ð2:15Þ
In view of the constitutive equations (2.10), in the case of cylindrical Cosserat shells we obtain
Nss ¼ ða1 þ 2a2Þess þ a1ezz þ
a5 þ a6 þ a7

RðsÞ qss þ
a5
RðsÞ qzz þ a9cn þ b4u;

Nzz ¼ a1ess þ ða1 þ 2a2Þezz þ a9cn þ b4u;

Nsz ¼ 2a2esz; Nzs ¼ 2a2esz þ
1

RðsÞ ða6qzs þ a7qszÞ;

V s ¼ a3cs; V z ¼ a3cz; V n ¼ a9ðess þ ezzÞ þ a4cn þ b5u;

Mss ¼ ða5 þ a6 þ a7Þqss þ a5qzz; Mzz ¼ a5qss þ ða5 þ a6 þ a7Þqzz;

Msz ¼ a6qzs þ a7qsz; Mzs ¼ a6qsz þ a7qzs;

Msn ¼ a8qns þ b2

ou
os

; Mzn ¼ a8qnz þ b2

ou
oz

;

hs ¼ b2qns þ b1

ou
os

; hz ¼ b2qnz þ b1

ou
oz

; g ¼ b4ðess þ ezzÞ þ b5cn þ b3u:

ð2:16Þ
The equilibrium equations (2.7)–(2.9) for the case when the assigned body loads fi, li and p are null can be
written in the form
o

os
Nss þ

o

oz
Nzs þ

1

RðsÞ V s ¼ 0;
o

os
Nsz þ

o

oz
Nzz ¼ 0;

o

os
V s þ

o

oz
V z �

1

RðsÞNss ¼ 0;
o

os
Mss þ

o

oz
Mzs � V s ¼ 0;

o

os
Msz þ

o

oz
Mzz � V z ¼ 0;

o

os
Msn þ

o

oz
Mzn � V n ¼ 0;

o

os
hs þ

o

oz
hz � g ¼ 0:

ð2:17Þ
Relations (2.15)–(2.17) represent the field equations that govern the static deformation of cylindrical Coss-
erat shells and they will be employed in the subsequent sections.

The expression of the strain energy density associated to cylindrical Cosserat surfaces with voids is given
by
W ¼ 1
2
a1eaaebb þ a2eabeab þ 1

2
a3caca þ 1

2
a4ðc3Þ

2 þ 1
2
ða5qaaqbb þ a6qabqab þ a7qabqbaÞ þ 1

2
a8q3aq3a

þ a9eaac3 þ 1
2
b1u;au;a þ b2q3au;a þ 1

2
b3u

2 þ b4eaauþ b5c3u: ð2:18Þ
Under the hypothesis that the strain energy density W is a positive definite quadratic form of the variables
eab, ci, qia,u,u,a, it follows that the constitutive coefficients satisfy the restrictions:
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a1 þ a2 > 0; a2 > 0; a3 > 0; a4ða1 þ a2Þ � a29 > 0;

2a5 þ a6 þ a7 > 0; a6 > 0; a6 � a7 > 0; a8 > 0; a8b1 � b2
2 > 0;

a1 þ a2 a9 b4

a9 a4 b5

b4 b5 b3

�������
������� > 0:
3. Statement of Saint-Venant�s problem for Cosserat shells

Let us consider a porous shell whose reference configuration is the cylindrical surface S given by (2.12)
and let C0, C�h be the end edge curves perpendicular to the generator.

We mention that the cylindrical surfaceS can be either open (in the case when the curves Cz are open) or
closed (when the curves Cz are closed). The boundary of a closed cylindrical Cosserat shell consists of the
end edge curves C0 and C�h. For an open cylindrical shell, we denote by L0 and L�s the lateral edges parallel to
the generator characterized by the equations s = 0 and �s, respectively. In this case, the boundary of S is
oS ¼ C0 [ C�h [ L0 [ L�s.

For porous cylindrical shells, the Saint-Venant�s problem consists in finding a solution v = {u,d,u} of
the Eqs. (2.15)–(2.17) subject to the boundary conditions on the end edges
N ¼ N ð1Þ; M ¼ M ð1Þ; h ¼ 0 on C0;

N ¼ N ð2Þ; M ¼ M ð2Þ; h ¼ 0 on C�h;
ð3:1Þ
where N(a) and M(a)(a = 1,2) are prescribed functions. In the case of open cylindrical surfaces, the solution
v must satisfy, in addition, the following null conditions on the lateral edges:
N ¼ 0; M ¼ 0; h ¼ 0 on L0 [ L�s: ð3:2Þ

The purpose of this paper is to determine a solution of the relaxed Saint-Venant�s problem for cylindrical
shells. In the relaxed formulation of Saint-Venant�s problem the conditions (3.1)1,2 are replaced by the fol-
lowing requirements:
Z

C0

N dl ¼ R0;

Z
C0

ðR�N þD�MÞdl ¼ M 0: ð3:3Þ
The above relations express the conditions that the resultant of the contact forces acting on C0 is equal to a
prescribed vector R0 and the resultant moment about O of the contact forces and contact director couples
acting on C0 has the prescribed value M 0.

As a consequence of the equilibrium equations (2.17)1�6 and of the conditions (3.3), we deduce that
Z
C�h

N dl ¼ �R0;

Z
C�h

ðR�N þD�MÞdl ¼ �M 0: ð3:4Þ
Also, in the relaxed Saint-Venant�s problem the conditions (3.1)3,6 are replaced by the requirements that the
resultant equilibrated stress acting on each end edge curve is zero, i.e.
Z

C0

hdl ¼ 0;

Z
C�h

hdl ¼ 0: ð3:5Þ
On the edge curve C0 we have m = �e3 and
N ¼ �ðNzsA1 þ NzzA2 þ V zA3Þ; M ¼ �ðMzsA1 þMzzA2 þMznA3Þ on C0:
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Hence, the conditions (3.3) can be written in the form
Z
C0

ðx0aNzs þ �abx0bV zÞdl ¼ �R0
a;

Z
C0

Nzz dl ¼ �R0
3;Z

C0

ðx0aMzz þ �baxbNzzÞdl ¼ M0
a;Z

C0

ð�abx0axbNzs þ xax0aV z �MzsÞdl ¼ M0
3;

ð3:6Þ
where we have denoted by R0
i ¼ R0 � ei;M0

i ¼ M 0 � ei. Similarly, from the conditions (3.5) we obtain that
Z
C0

hz dl ¼ 0;

Z
C�h

hz dl ¼ 0: ð3:7Þ
Since L0 and L�s are parallel to e3, the conditions (3.2) on the lateral edges are equivalent to
Nss ¼ Nsz ¼ V s ¼ 0; Mss ¼ Msz ¼ Msn ¼ 0; hs ¼ 0 on L0 [ L�s: ð3:8Þ

To summarize, the relaxed Saint-Venant�s problem consists in the determination of a solution v = {u,d,u}
of class C2ðSÞ \ C1ðSÞ for the Eqs. (2.15)–(2.17) which satisfies the relations (3.6) and (3.7) and the bound-
ary conditions on the lateral edges (3.8) (in the case of an open surface).

In the same way as in the classical theory of elasticity (see Ies�an, 1987), we remark that the relaxed Saint-
Venant�s problem for cylindrical shells decomposes into two problems (P1) and (P2) characterized by the
following assumptions concerning the resultants R0 and M 0:
ðP 1Þ: R0
a ¼ 0;

ðP 2Þ: R0
3 ¼ M0

i ¼ 0:
The problem (P1) is the extension, bending and torsion problem for cylindrical shells, while (P2) is the flex-
ure problem. We denote by KIðR0

3;M
0
1;M

0
2;M

0
3Þ and KIIðR0

1;R
0
2Þ the sets of solutions of the problems (P1)

and (P2), respectively, and by D the set of all elements v = {u,d,u} that satisfy Eqs. (2.15)–(2.17) and the
boundary conditions on the lateral edges (3.8) (in the case of an open surface). For any v = {u,d,u}, we
introduce the vector-valued linear functionals Rð�Þ and M ð�Þ defined by
RðvÞ ¼
Z
C0

NðvÞdl; M ðvÞ ¼
Z
C0

½R�NðvÞ þD�MðvÞ�dl
and we designate by RaðvÞ ¼ RðvÞ � ea and MaðvÞ ¼ M ðvÞ � ea.
In what follows, we use the method established by Ies�an (1986, 1987) in order to determine a solution of

the relaxed Saint-Venant�s problem for cylindrical Cosserat shells. We begin with the following theorem.

Theorem 1. If v 2 D and ov
ox3

2 C1ð �SÞ, then ov
ox3

2 D and the following relations hold:
R
ov
ox3

� �
¼ 0; M

ov
ox3

� �
¼ �abRbðvÞea:
Proof. In view of (2.15)–(2.17) and (3.8), it follows that ov
ox3

2 D. We obtain
R
ov
ox3

� �
¼

Z
C0

o

oz
NðvÞdl ¼

Z
C0

� o

oz
ðNzsA1 þ NzzA2 þ V zA3Þdl

¼
Z
C0

o

os
Nss þ r0V s

� �
sþ o

os
Nsze3 þ

o

os
V s � r0Nss

� �
n

� �
dl

¼
Z
C0

o

os
ðNsssþ Nsze3 þ V snÞdl ¼ 0:
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On the other hand, by virtue of the Eqs. (2.14) and (2.17) and of the relation Nzs = Nsz + r 0Msz, we can
write
M
ov
ox3

� �
¼ �

Z
C0

R� o

oz
ðNzsA1 þ NzzA2 þ V zA3Þ þ A3 �

o

oz
ðMzsA1 þMzzA2 þMznA3Þ

� �
dl

¼
Z
C0

ðxaeaÞ �
o

os
Nss þ r0V s

� �
sþ o

os
Nsz

� �
e3 þ

o

os
V s � r0Nss

� �
n

� ��
þ o

os
Mss � V s

� �
e3 �

o

os
Msz � V z

� �
s

�
dl

¼
Z
C0

o

os
ðNss�abxax0b � V sxax0a þMssÞe3 þ ðNsz�abxb �Mszx0aÞea
h i

dl

� �ab

Z
C0

ðx0bNzs þ �bcx0cV zÞdl
� �

ea ¼ �abRbðvÞea:
This completes the proof. h

We deduce the following consequences, which will be used in the subsequent sections.

Corollary 2. If v 2 KIðR0
3;M

0
1;M

0
2;M

0
3Þ and ov

ox3
2 C1ð �SÞ, then ov

ox3
2 D and
R
ov
ox3

� �
¼ 0; M

ov
ox3

� �
¼ 0:
Corollary 3. If v 2 KIIðR0
1;R

0
2Þ and ov

ox3
2 C1ðSÞ, then
ov
ox3

2 KIð0;R0
2;�R0

1; 0Þ:
4. Deformation of open cylindrical shells

In this section, we shall determine a solution of the relaxed Saint-Venant�s problem for open cylindrical
shells. The solution that we are looking for must satisfy the boundary conditions on the lateral edges (3.8),
since the curve section Cz is open.

Without loss of generality, we can choose the origin O of the Cartesian coordinate frame such that
Z �s

0

xaðsÞds ¼ 0 ða ¼ 1; 2Þ: ð4:1Þ
4.1. Extension, bending and torsion

We now confine our attention to the problem (P1), characterized by R0
a ¼ 0.

Suggested by Corollary 2, we search for a solution v 2 KIðR0
3;M

0
1;M

0
2;M

0
3Þ, v = {u,d,u}, such that
ou

ox3
¼ u� þ x� R;

od

ox3
¼ x�D;

ou
ox3

¼ 0; ð4:2Þ
where u� and x are arbitrary constant vectors. We mention that any vector field feu; edg of the form
eu ¼ u� þ x� R; ed ¼ x�D; ð4:3Þ

represents a rigid body displacement field of the Cosserat shell (see Naghdi, 1972, p. 463).
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Since D = A3 = n, from the relations (4.2) we find
ui;3 ¼ u�i þ �ijkxjxk; da;3 ¼ x3x0a; d3;3 ¼ �xax0a; u;3 ¼ 0; ð4:4Þ

where we have denoted by ui = u Æ ei, di = d Æ ei, u�i ¼ u� � ei, xi = x Æ ei and �ijk is the three-dimensional alter-
nator. By integrating the equations (4.4) with respect to x3, we obtain
ua ¼
1

2
�ababx23 � k0�abxbx3 þ waðsÞ;

u3 ¼ �abaaxbx3 þ a3x3 þ w3ðsÞ; da ¼ k0x0ax3 þ faðsÞ;
d3 ¼ �aax0ax3 þ f3ðsÞ; u ¼ uðsÞ;

ð4:5Þ
except for an additive rigid body displacement field of the form (4.3). The constants ai and k0 that appear in
(4.5) are given by aa = xa, a3 ¼ u�3, k0 = x3 and the functions wi(s), fi(s) designate arbitrary functions of
class C2½0;�s�. In what follows, we shall determine ai, k0, wi(s) and fi(s) such that the basic Eqs. (2.15)–
(2.17) and the boundary conditions (3.6)–(3.8) be satisfied.

Let us introduce the notations
wðsÞ ¼ waðsÞea; fðsÞ ¼ faðsÞea;
ws ¼ w � s; wn ¼ w � n; fs ¼ f � s; fn ¼ f � n:

ð4:6Þ
From (4.5) and (4.6) we derive
us ¼
1

2
z2�ababx0a þ k0z�abxax0b þ ws;

un ¼
1

2
z2aax0a � k0zxax0a þ wn; uz ¼ zð�abaaxb þ a3Þ þ w3;

ds ¼ k0zþ fs; dn ¼ fn; dz ¼ �zaax0a þ f3; u ¼ uðsÞ:

ð4:7Þ
In order to simplify the subsequent expressions, let us introduce the notations
a0 ¼ a5 þ a6 þ a7; b0 ¼ a5a
�1
0 :
Making use of the geometrical equations (2.15) and of the constitutive equations (2.16), we obtain
Nss ¼ a1ð�abaaxb þ a3Þ � a5aax0ar
0 þ a1 þ 2a2 þ a0ðr0Þ2

h i
ðw0 � sÞ þ a0f

0
sr

0 þ a9fn þ b4u;

Nzz ¼ ða1 þ 2a2Þð�abaaxb þ a3Þ þ a1w
0 � sþ a9fn þ b4u;

Nsz ¼ a2ðk0�abxax0b þ w0
3Þ; V s ¼ a3ðw0 � nþ fsÞ;

V z ¼ a3ð�k0xax0a þ f3Þ; V n ¼ a9ð�abaaxb þ a3 þ w0 � sÞ þ a4fn þ b5u;

Mss ¼ a0 r0ðw0 � sÞ þ f0s
� 	

� a5aax0a; Mzz ¼ a5 r0ðw0 � sÞ þ f0s
� 	

� a0aax0a;

Msz ¼ a7k0 þ a6ðk0�abxax0br0 þ f03Þ; Mzs ¼ a6k0 þ a7ðk0�abxax0br0 þ f03Þ;

Msn ¼ a8f
0
n þ b2u

0; Mzn ¼ 0; hs ¼ b2f
0
n þ b1u

0;

hz ¼ 0; g ¼ b4ð�abaaxb þ a3 þ w0 � sÞ þ b5fn þ b3u:

ð4:8Þ
Then, the equilibrium equations (2.15)–(2.17) reduce to
d

ds
Nss ¼ �r0V s;

d

ds
Nsz ¼ 0;

d

ds
V s ¼ r0Nss;

d

ds
Mss ¼ V s;

d

ds
Msz ¼ V z;

d

ds
Msn ¼ V n;

d

ds
hs ¼ g:

ð4:9Þ
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From the relations (4.9)1,3,4 we deduce that
d

ds
ðNsssþ V snÞ ¼ 0
and hence, there exist the constants Bi (i = 1,2,3) such that
Nss ¼ Bax0a; V s ¼ �abBax0b; Mss ¼ �abBaxb þ B3: ð4:10Þ
By using the Eqs. (4.8)1,4,7 and (4.10) we derive, after some calculations, that the following equality holds:
ða1 þ 2a2Þðw0 � sÞ þ a9fn þ b4u ¼ �a1ð�abaaxb þ a3Þ þ Baðx0a þ �baxbr0Þ � B3r
0: ð4:11Þ
In view of (4.8), we see that the equations (4.9)2,5 are equivalent to
a2
d

ds
ðk0�abxax0b þ w0

3Þ ¼ 0; a6
d2

ds2
� a3

� �
ðf3 � k0xax0aÞ ¼ 0: ð4:12Þ
Also, the equilibrium equations (4.9)6 and (4.9)7 can be put, respectively, in the form
a8f
00
n þ b2u

00 � a4fn � b5u� a9ðw0 � sÞ ¼ a9ð�abaaxb þ a3Þ;

b2f
00
n þ b1u

00 � b5fn � b3u� b4ðw0 � sÞ ¼ b4ð�abaaxb þ a3Þ:
ð4:13Þ
Let us impose that the boundary conditions on the lateral edges (3.8) be satisfied. Since Nss = Vs = Mss = 0
for s ¼ 0;�s; from (4.10) it follows that:
Bi ¼ 0; i ¼ 1; 2; 3:
On the other hand, taking into account the relations Nsz = Msz = 0 for s ¼ 0;�s and (4.12), we obtain
w3ðsÞ ¼ �k0

Z s

0

�abxax0b ds; f3ðsÞ ¼ k0xax0a � k0p1ðsÞ; ð4:14Þ
where p1(s) denotes the function
p1ðsÞ ¼
a6 þ a7ffiffiffiffiffiffiffiffiffi

a3a6
p cosh

ffiffiffiffiffi
a3
a6

r
� �s
2

� �� ��1

sinh

ffiffiffiffiffi
a3
a6

r
s� �s

2

� �� �
: ð4:15Þ
The conditions Msn = hs = 0 for s ¼ 0;�s are satisfied provided
f0nð0Þ ¼ f0nð�sÞ ¼ 0; u0ð0Þ ¼ u0ð�sÞ ¼ 0: ð4:16Þ

We observe that we can determine the functions (w 0 Æ s)(s), fn(s) and u(s) from the system of Eqs. (4.11) and
(4.13), together with the conditions (4.16). Indeed, let y(c)(s), z(c)(s) and u( c)(s)(c = 1,2) be the functions
defined on ½0;�s� that satisfy the equations
ða1 þ 2a2ÞyðcÞ þ a9zðcÞ þ b4uðcÞ ¼ �a1xc;

a8z00ðcÞ þ b2u
00
ðcÞ � a4zðcÞ � b5uðcÞ � a9yðcÞ ¼ a9xc;

b2z
00
ðcÞ þ b1u

00
ðcÞ � b5zðcÞ � b3uðcÞ � b4yðcÞ ¼ b4xc;

ð4:17Þ
for s 2 ½0;�s�; c ¼ 1; 2, and are subject to the conditions
z0ðcÞð0Þ ¼ z0ðcÞð�sÞ ¼ 0; u0
ðcÞð0Þ ¼ u0

ðcÞð�sÞ ¼ 0; c ¼ 1; 2: ð4:18Þ
We mention that the solution {y(c),z(c),u(c)} of the boundary value problem (4.17) and (4.18) is uniquely
determined and it can be computed with the help of the variation of constants method (see e.g., Reid, 1971).
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We denote by A, B and C the constants that verify the system of equations
ða1 þ 2a2ÞAþ a9Bþ b4C ¼ �a1;

a9Aþ a4Bþ b5C ¼ �a9;

b4Aþ b5Bþ b3C ¼ �b4:

ð4:19Þ
With these notations, the functions (w 0 Æ s), fn and uwhich satisfy the Eqs. (4.11) and (4.13) (written with
Bi = 0) and the conditions (4.16) can be expressed in the form
w0 � s ¼ a3Aþ �abaayðbÞ;

fn ¼ a3Bþ �abaazðbÞ;

u ¼ a3Cþ �abaauðbÞ:

ð4:20Þ
In the same time, from the Eqs. (4.8)4,7 and (4.10) 2,3 we deduce that
fs ¼ �w0 � n; w00 � n ¼ �b0aax
0
a: ð4:21Þ
With the help of the relations (4.20)1,2 and (4.21) we determine the functions wa(s) and fa(s). The result is
waðsÞ ¼ W a½ai�ðsÞ; faðsÞ ¼ Za½ai�ðsÞ;

where the functions Wa, Za depend on the constants ai (i = 1,2,3) and are defined by
W a½ai�ðsÞ ¼ a3A xa þ �ab

Z s

0

x0brds
� �

� ac b0�ab

Z s

0

x0bxc dsþ �bc

Z s

0

x0ayðbÞ ds
�

��ab�cd xb

Z s

0

yðdÞr
0 ds�

Z s

0

xbyðdÞr
0 ds

� ��
;

Za½ai�ðsÞ ¼ a3 �Ax0arþ B�abx0b
� �

þ ac b0x
0
axc þ �ab�cdx0bzðdÞ þ �bcx0a

Z s

0

yðbÞr
0 ds

� �
:

ð4:22Þ
In what follows, we shall find the values of the constants ai and k0 such that the boundary conditions on the
end edges (3.6) and (3.7) be satisfied. By virtue of the relations Nzs = Nsz + r 0Msz,Nsz = 0 and (4.9)5, we get
Z

C0

ðx0aNzs þ �abx0bV zÞdl ¼
Z �s

0

ðx0ar0Msz þ �abx0bV zÞds ¼
Z �s

0

d

ds
ð�abx0bMszÞds ¼ 0
and then the conditions (3.6)1 (written for R0
a ¼ 0) hold. The conditions (3.7) are also satisfied, since hz = 0.

By integrating the equations (4.17) from s = 0 to �s we obtain
Z �s

0

yðcÞ ds ¼
Z �s

0

zðcÞ ds ¼
Z �s

0

uðcÞ ds ¼ 0; c ¼ 1; 2: ð4:23Þ
In view of (4.11), the condition (3.6)2 can be written in the form
2a2

Z �s

0

ð�abaaxb þ a3 � w0 � sÞds ¼ �R0
3:
By substituting in the above relation (4.20)1, we find
a3 ¼
R0

3

2a2ðA� 1Þ�s : ð4:24Þ
Since we have
Nzz ¼ 2a2ð�abaaxb þ a3 � w0 � sÞ; Mzz ¼ ða5b0 � a0Þaax0a;
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the boundary conditions (3.6)3 are equivalent to
Iabab ¼ M0
a; ð4:25Þ
where we have denoted by Iab the expressions
Iab ¼ ða5b0 � a0Þ
Z �s

0

x0ax
0
b ds� 2a2�ac�bd

Z �s

0

xcðxd � yðdÞÞds: ð4:26Þ
Finally, the condition (3.6)4 reduces to
Z �s

0

ðMsz þMzsÞds ¼ �M0
3 :
In view of (4.14)2 and (4.15), this relation becomes
k0 ¼ � M0
3

2ða6 þ a7Þ
�s� a6 þ a7ffiffiffiffiffiffiffiffiffi

a3a6
p tanh

ffiffiffiffiffi
a3
a6

r
� �s
2

� �� ��1

: ð4:27Þ
Thus, we have obtained the following solution of the extension, bending and torsion problem for open
cylindrical shells
ua ¼
1

2
�ababx23 � k0�abxbx3 þ W a½ai�ðsÞ;

u3 ¼ �abaaxbx3 þ a3x3 � k0

Z s

0

�abxax0b ds;

da ¼ k0x0ax3 þ Za½ai�ðsÞ;
d3 ¼ �aax0ax3 þ k0xax0a � k0p1ðsÞ;
u ¼ a3Cþ �abaauðbÞðsÞ:

ð4:28Þ
The constants ai(i = 1,2,3) and k0 that appear in the above relations are determined by (4.24)–(4.27). We
remind that the functions Wa,Za and p1 are defined by (4.22) and (4.15), while u(b) can be determined by
solving the problem (4.17) and (4.18).

The solution (4.28) of the problem (P1) will be denoted by v(ai,k0).

4.2. Flexure

We consider now the problem (P2), i.e. the case when R0
3 ¼ M0

i ¼ 0.
In view of Corollary 3, it is natural to search for a solution v0 = {u0,d0,u0} of the flexure problem in the

form
v0 ¼
Z x3

0

vðbi; k1Þdx3 þ vðb0i ; k2Þ þ w0; ð4:29Þ
where bi, b
0
i (i = 1,2,3) and ka (a = 1,2) are constants, while w0(s) = {f0(s),g0(s),w0(s)} is a function of class

C2½0;�s� which depends only on s. In what follows, we shall determine bi, b
0
i , ka and the unknown functions

f0(s), g0(s), w0(s) such that v0 2 KIIðR0
1;R

0
2Þ.

Taking into account (4.2) and (4.29), we remark that ov0

ox3
differs from v(bi,k1) only by a vector field of the

form feu; ed; 0g, where feu; edg represents a rigid body displacement field of the Cosserat surface (see (4.3)).
Then, by virtue of Corollary 3, we have
vðbi; k1Þ 2 KIð0;R0
2;�R0

1; 0Þ: ð4:30Þ
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Making use of the relations (4.24)–(4.27) written for the solution of the problem (P1) specified in (4.30), we
obtain
Iabbb ¼ �abR
0
b; b3 ¼ 0; k1 ¼ 0: ð4:31Þ
With the help of (4.28), the equality (4.29) can be written in the form
u0a ¼
1

6
�abbbx33 þ

1

2
�abb

0
bx

2
3 � k2�abxbx3 þ x3W a½bi�ðsÞ þ W a½b0i �ðsÞ þ f 0

a ðsÞ;

u03 ¼
1

2
�abbaxbx23 þ �abb

0
axbx3 þ b03x3 � k2

Z s

0

�abxax0b dsþ f 0
3 ðsÞ;

d0a ¼ k2x0ax3 þ x3Za½bi�ðsÞ þ Za½b0i �ðsÞ þ g0aðsÞ;

d03 ¼ � 1

2
bax0ax

2
3 � b0ax

0
ax3 þ k2xax0a � k2p1ðsÞ þ g03ðsÞ;

u0 ¼ �abbauðbÞðsÞx3 þ �abb
0
auðbÞðsÞ þ b03Cþ w0ðsÞ;

ð4:32Þ
where f 0
i ðsÞ ¼ f 0ðsÞ � ei and g0i ðsÞ ¼ g0ðsÞ � ei.

By virtue of the relations (4.32), (2.15) and (2.16), the equilibrium equations (2.17)1,3,4,6,7 can be put in
the equivalent form
d

ds
ða1 þ 2a2Þðf 00 � sÞ þ a9ðg0 � nÞ þ a0r

0 r0ðf 00 � sÞ þ ðg0 � sÞ
0� 	
þ b4w0


 �
þ a3r

0ðf 00 � nþ g0 � sÞ ¼ 0;

a3
d

ds
ðf 00 � nþ g0 � sÞ � r0 ða1 þ 2a2Þðf 00 � sÞ þ a9ðg0 � nÞ þ a0r

0 r0ðf 00 � sÞ þ ðg0 � sÞ
0� 	
þ b4w0


 �
¼ 0;

a0
d

ds
r0ðf 00 � sÞ þ ðg0 � sÞ

0� 	
� a3ðf 00 � nþ g0 � sÞ ¼ 0;

a8ðg0 � nÞ
00 þ b2w

00
0 � a4ðg0 � nÞ � b5w0 � a9ðf 00 � sÞ ¼ 0;

b2ðg0 � nÞ
00 þ b1w

00
0 � b5ðg0 � nÞ � b3w0 � b4ðf 0

0 � sÞ ¼ 0:

ð4:33Þ

Following a procedure already employed in Section 4.1, from the system of equations (4.33) together with
the conditions on the lateral edges:
Nss ¼ V s ¼ Mss ¼ Msn ¼ hs ¼ 0 for s ¼ 0;�s;
we derive that
f 0
a ðsÞ ¼ g0aðsÞ ¼ w0ðsÞ ¼ 0; ð4:34Þ
where we have neglected a rigid body displacement field of the Cosserat shell.
The equilibrium equation (2.17)2 becomes
d

ds
ðf 00

3 ðsÞ þ x0aW a½bi�ðsÞÞ þ 2�abbaðxb � yðbÞÞ ¼ 0:
Taking into account the condition Nsz ¼ 0 for s = 0, �s, from the above equation we find
f 0
3 ðsÞ ¼ �

Z s

0

x0aW a½bi�ðsÞds� 2�abba

Z s

0

Z n

0

½xbðkÞ � yðbÞðkÞ�dkdn: ð4:35Þ
In order to determine g03ðsÞ, let us introduce the function p0(s) defined by the equality
g03ðsÞ ¼ p0ðsÞ � �abx0bW a½bi�ðsÞ: ð4:36Þ
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In view of the geometrical and constitutive relations (2.15) and (2.17), we deduce that the equation of equi-
librium (2.17)5 reduces to
a6p000ðsÞ � a3p0ðsÞ ¼ ða6 þ a7Þbaðx0a þ �abyðbÞr
0Þ; s 2 ½0;�s�: ð4:37Þ
The conditions on the lateral edges Msz = 0 are equivalent to the relations
p00ð0Þ ¼ � ða6 þ a7Þ
a6

bab0xað0Þ; p00ð�sÞ ¼ � ða6 þ a7Þ
a6

ba b0xað�sÞ � �ab

Z �s

0

yðbÞr
0 ds

� �
: ð4:38Þ
By solving the boundary value problem (4.37) and (4.38) we find the function p0(s).
The solution v0 must also verify the end edge conditions (3.6) and (3.7). We remark that (3.6)1 and (3.7)

are satisfied, by virtue of the relations (4.31)1 and (4.23), respectively. On the other hand, from the condi-
tions (3.6)2,3 written for R0

3 ¼ M0
a ¼ 0 we obtain b0i ¼ 0 (i = 1,2,3). Finally, the end edge condition (3.6)4

written for M0
3 ¼ 0 yields an equation for the determination of the constant k2. We find
k2 ¼ 2�abba

Z �s

0

Z s

0

yðbÞðnÞr0ðnÞdnds� b0bc

Z �s

0

xax0ax
0
c ds

�
þ 2a2
a6 þ a7

�cdbc

Z �s

0

ðxd � yðdÞÞ
Z s

0

�abx0aðnÞxbðnÞdndsþ p0ð0Þ � p0ð�sÞ½ �
�

� 2�s� 2ða6 þ a7Þffiffiffiffiffiffiffiffiffi
a3a6

p tanh

ffiffiffiffiffi
a3
a6

r
� �s
2

� �#�1

: ð4:39Þ

24

We conclude that the solution v0 of the flexure problem for open cylindrical shells is given by
u0a ¼
1

6
�abbbx33 � k2�abxbx3 þ x3W a½bi�ðsÞ;

u03 ¼
1

2
�abbaxbx23 � k2

Z s

0

�abxax0b dsþ f 0
3 ðsÞ;

d0a ¼ k2x0ax3 þ x3Za½bi�ðsÞ;

d03 ¼ � 1

2
bax0ax

2
3 þ k2xax0a � �abx0bW a½bi�ðsÞ � k2p1ðsÞ þ p0ðsÞ;

u0 ¼ �abbauðbÞðsÞx3:

ð4:40Þ
5. Deformation of closed cylindrical shells

In the case of closed cylindrical shells, we denote by Ac the area bounded by the closed curve section Cz.
The length of the perimeter of the curve Cz is �s . Without loss of generality, the origin O of the Cartesian
coordinate frame is fixed such that (4.1) holds, while the arc parameter s along the closed curve Cz is chosen
such that
rð�sÞ ¼ rð0Þ þ 2p: ð5:1Þ

Since u, d, u and their derivatives are single-valued functions, they satisfy the conditions
uð0; zÞ ¼ uð�s; zÞ; dð0; zÞ ¼ dð�s; zÞ; uð0; zÞ ¼ uð�s; zÞ;
oku

osk
ð0; zÞ ¼ oku

osk
ð�s; zÞ; okd

osk
ð0; zÞ ¼ okd

osk
ð�s; zÞ; oku

osk
ð0; zÞ ¼ oku

osk
ð�s; zÞ;

ð5:2Þ
where k = 1,2 and z 2 ½0; �h�.
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5.1. Extension, bending and torsion

In order to investigate the problem (P1), we employ the same method as in Section 4.1. We search for a
solution v 2 KIðR0

3;M
0
1;M

0
2;M

0
3Þ, v = {u,d,u}, such that (4.2) is satisfied. Then, we deduce the relations

(4.4)–(4.13), which hold true also in the case of closed cylindrical shells.
The conditions (5.2) imply that
w3ð0Þ ¼ w3ð�sÞ; f3ð0Þ ¼ f3ð�sÞ; f03ð0Þ ¼ f03ð�sÞ: ð5:3Þ

From (4.12) and (5.3) we obtain
w3ðsÞ ¼ �k0

Z s

0

�abxax0b dsþ k0
2Ac

�s
s; f3ðsÞ ¼ k0xax0a; ð5:4Þ
where we have neglected an additive constant representing a rigid body displacement field.
We remark that the conditions (5.2) also yield
fnð0Þ ¼ fnð�sÞ; f0nð0Þ ¼ f0nð�sÞ; uð0Þ ¼ uð�sÞ; u0ð0Þ ¼ u0ð�sÞ: ð5:5Þ

The system of equations (4.11) and (4.13) and the conditions (5.5) represent a boundary value problem for
the determination of the functions (w 0 Æ s)(s) , fn(s) and u(s). Indeed, let A,B and C be the constants defined
by (4.19) and let us denote, in this section, by y(c)(s), z(c)(s) and u(c)(s) (s 2 ½0;�s�; c ¼ 1; 2) the functions
which verify the equations (4.17) and the following conditions:
zðcÞð0Þ ¼ zðcÞð�sÞ; z0ðcÞð0Þ ¼ z0ðcÞð�sÞ; uðcÞð0Þ ¼ uðcÞð�sÞ; u0
ðcÞð0Þ ¼ u0

ðcÞð�sÞ: ð5:6Þ
Also, let F(i)(s) , G(i)(s) and U(i)(s) (i = 1,2,3) be the functions defined on ½0;�s� which satisfy the systems of
equations
a8G
00
ðiÞ þ b2U

00
ðiÞ � a4GðiÞ � b5UðiÞ � a9F ðiÞ ¼ 0;

b2G
00
ðiÞ þ b1U

00
ðiÞ � b5GðiÞ � b3UðiÞ � b4F ðiÞ ¼ 0;

ða1 þ 2a2ÞF ðaÞ þ a9GðaÞ þ b4UðaÞ ¼ x0a þ �baxbr0 ða ¼ 1; 2Þ;
ða1 þ 2a2ÞF ð3Þ þ a9Gð3Þ þ b4Uð3Þ ¼ �r0;

ð5:7Þ
together with the boundary conditions
GðiÞð0Þ ¼ GðiÞð�sÞ; G0
ðiÞð0Þ ¼ G0

ðiÞð�sÞ;
UðiÞð0Þ ¼ UðiÞð�sÞ; U0

ðiÞð0Þ ¼ U0
ðiÞð�sÞ ði ¼ 1; 2; 3Þ:

ð5:8Þ
We mention that the functions y(c), z(c), u(c), F(i), G(i) and U(i) exist and are uniquely determined (see e.g.,
Reid, 1971). With the help of these notations, the solution of the problem (4.11), (4.13), (5.5) can be written
as follows:
w0 � s ¼ a3Aþ �abaayðbÞ þ BiF ðiÞ;

fn ¼ a3Bþ �abaazðbÞ þ BiGðiÞ;

u ¼ a3Cþ �abaauðbÞ þ BiUðiÞ:

ð5:9Þ
In an analogous manner as in Section 4.1, we derive the relations
fs ¼ �w0 � nþ a�1
3 �abBax0b;

w00 � n ¼ �b0aax
0
a � a�1

0 ð�abBaxb þ B3Þ þ a�1
3 Bax0ar

0:
ð5:10Þ
In view of (5.9)1,2 and (5.10), we can determine wa(s) and fa(s). We obtain
waðsÞ ¼ U a½ai;Bi�ðsÞ; faðsÞ ¼ Y a½ai;Bi�ðsÞ; ð5:11Þ
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where the functions Ua and Ya depend on the constants ai, Bi and are defined by
U a½ai;Bi�ðsÞ ¼ a3A xa þ �ab

Z s

0

x0brds
� �

� ac b0�ab

Z s

0

x0bxc dsþ �bc

Z s

0

x0ayðbÞ ds� �ab�cd xb

Z s

0

yðdÞr
0 ds�

Z s

0

xbyðdÞr
0 ds

� �� �
þ Bca

�1
0 �ab�cd

Z s

0

xbxd ds� xb

Z s

0

xd dsþ a0a
�1
3

Z s

0

x0bx
0
d ds

� �
þ B3a

�1
0 �ab

Z s

0

xb ds� sxb

� �
þ Bi

Z s

0

x0aF ðiÞ dsþ �abxb

Z s

0

F ðiÞr
0 ds� �ab

Z s

0

xbF ðiÞr
0 ds

� �
;

Y a½ai;Bi�ðsÞ ¼ a3ðB�abx0b � Ax0arÞ þ ac b0x
0
axc þ �ab�cdx0bzðdÞ � �cdx0a

Z s

0

yðdÞr
0 ds

� �
� Bca

�1
0 �bcx0a

Z s

0

xb dsþ B3a
�1
0 sx0a þ Bi �abx0bGðiÞ � x0a

Z s

0

F ðiÞr
0 ds

� �
: ð5:12Þ
We remark that the conditions (5.2) are satisfied if and only if the following relations hold:
fsð0Þ ¼ fsð�sÞ; wað0Þ ¼ wað�sÞ; a ¼ 1; 2: ð5:13Þ
Taking into account (5.11) and (5.12), the equalities (5.13) reduce to the following conditions on the con-
stants ai and Bi:
a32pAþ aa�ab

Z �s

0

yðbÞr
0 dsþ Bi

Z �s

0

F ðiÞr
0 ds� B3a

�1
0 �s ¼ 0;

U a½ai;Bi�ð0Þ ¼ U a½ai;Bi�ð�sÞ:
ð5:14Þ
The end edge conditions (3.6) and (3.7) must also be satisfied. In the same way as in the case of open cylin-
drical surfaces, we find that (3.6)1 and (3.7) are verified.

By virtue of (4.11) and (5.9)1, the equality (3.6)2 can be written in the form
a3½2a2ðA� 1Þ�s� þ BaA�ba

Z �s

0

xbr0 ds� B32pA ¼ R0
3: ð5:15Þ
By substituting the appropriate constitutive relations into (3.6)3, we deduce
Iabab � Bc b0�bc

Z �s

0

x0axb dsþ �ab

Z �s

0

xbðx0c þ �dcxdr0Þds
� �

þ B3�ab

Z �s

0

xbr0 dsþ Bið2a2�ab
Z �s

0

xbF ðiÞ dsÞ ¼ M0
a; ð5:16Þ
where Iab represents the notation introduced in (4.26).
The relations (5.14)–(5.16) form a system of six algebraic equations for the determination of the con-

stants ai and Bi (i = 1,2,3).
The value of the constant k0 can be computed from the end edge condition (3.6)4. After some calcula-

tions, we find
k0 ¼ �M0
3 a2

4

�s
A2

c þ 2ða6 þ a7Þ�s
� ��1

: ð5:17Þ
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In conclusion, we have obtained the following solution of the extension, bending and torsion problem for
closed cylindrical shells:
ua ¼
1

2
�ababx23 � k0�abxbx3 þ U a½ai;Bi�ðsÞ;

u3 ¼ �abaaxbx3 þ a3x3 � k0

Z s

0

�abxax0b dsþ k0
2Ac

�s
s;

da ¼ k0x0ax3 þ Y a½ai;Bi�ðsÞ; d3 ¼ �aax0ax3 þ k0xax0a;

u ¼ a3Cþ �abaauðbÞðsÞ þ BiUðiÞðsÞ:

ð5:18Þ
5.2. Circular cylindrical shells

In this section, we apply the theoretical results established previously and find the solution of the relaxed
Saint-Venant�s problem for closed circular cylindrical Cosserat surfaces.

We denote by R0 the radius of the cylindrical shell in the reference configuration S. The parametric
equation of S is given by (2.12), where
x1ðsÞ ¼ R0 cos
s
R0

; x2ðsÞ ¼ R0 sin
s
R0

; s 2 ½0; 2pR0�: ð5:19Þ
Then, from the relations (2.13) and (2.14) we deduce that
x0a ¼ �R�1
0 �abxb; x00a ¼ �R�2

0 xa; rðsÞ ¼ R�1
0 sþ p

2
: ð5:20Þ
We consider the problem (P1) (i.e. R
0
a ¼ 0) as a particular case of the problem solved in Section 5.1. Taking

into account (5.18)–(5.20) the solution of the extension, bending and torsion problem for circular cylindri-
cal shells is given by
ua ¼
1

2
�ababx23 � k0�abxbx3 � ðA��bcabxc þ a3A0Þxa;

u3 ¼ ð�abaaxb þ a3Þx3;
da ¼ �R�1

0 ðD�acxc þ k0x3Þ�abxb þ ðB��bcabxc þ a3B0Þxa
� 	

;

d3 ¼ R�1
0 �abaaxbx3; u ¼ �ðC��abaaxb þ a3C0Þ:

ð5:21Þ
Here, the constants ai and k0 have the following values:
aa ¼ � M0
a

pR3
0E

� ; a3 ¼ � R0
3

2pR0

2a2 þ A0 2a2 þ
a0
R2
0

� �� ��1

;

k0 ¼ � M0
3

2pR0

a2R2
0 þ 2ða6 þ a7Þ

� 	�1
:

ð5:22Þ
In (5.21) and (5.22), the notations A0, B0, C0 and A*, B*, C* represent constants which are determined,
respectively, by the systems of equations
ða1 þ 2a2 þ a0R�2
0 ÞA0 þ a9B0 þ b4C0 ¼ a1;

a9A0 þ a4B0 þ b5C0 ¼ a9;

b4A0 þ b5B0 þ b3C0 ¼ b4;

ð5:23Þ
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and
a1 þ 2a2 þ
4a0a3

a0 þ a3R2
0

� �
A� þ a9B� þ b4C

� ¼ a1 þ
2a3a5

a0 þ a3R2
0

;

a9A
� þ ða4 þ a8R�2

0 ÞB� þ ðb5 þ b2R
�2
0 ÞC� ¼ a9;

b4A
� þ ðb5 þ b2R

�2
0 ÞB� þ ðb3 þ b1R

�2
0 ÞC� ¼ b4;

ð5:24Þ
while the constants D� and E� are specified by
D� ¼ ða3R2
0 � a0ÞA� þ a5

� 	
ða0 þ a3R2

0Þ
�1
;

E� ¼ 2a2 þ
a0
R2
0

� 2a3a5
a0 þ a3R2

0

� �
þ 2a2 �

a5
R2
0

þ 4a0a3
a0 þ a3R2

0

� �
A� � a5

R2
0

D�:
ð5:25Þ
We denote the solution (5.21) of the problem (P1) by v(ai,k0).
In what follows, we consider the flexure problem (characterized by R0

3 ¼ M0
i ¼ 0) with respect to closed

circular cylindrical shells. We search for a solution v0 2 KIIðR0
1;R

0
2Þ, v

0 = {u0,d0,u0}, such that v0 is of the
form (4.29).

By using the same method as in Section 4.2, adapted for closed circular cylindrical surfaces, we finally
obtain the following solution of the problem (P2):
u0a ¼ 1
6
�abbbx33 þ A��bcbcxbxax3; u03 ¼ �abbaxbð12x

2
3 þ K�Þ;

d0a ¼ R�1
0 bcðB��bcxbxa � D��abxbxcÞx3; d03 ¼ R�1

0 �abbaxbð12x
2
3 þ L�Þ;

u0 ¼ C��abbbxax3:

ð5:26Þ
The constants ba are given in terms of R0
a by the relations
ba ¼ �
�abR

0
b

pR3
0E

� ; a ¼ 1; 2: ð5:27Þ
In (5.26) we have denoted by K� and L� the constant expressions
K� ¼ 2R2
0 1þ A� þ a3

a2
ðA� � D�Þ

� �
; L� ¼ R2

0

a6 þ a7
a6 þ a3R2

0

ð1þ A�Þ þ D�
� �

: ð5:28Þ
6. Remarks and comments

6.1. Properties of the solutions

(i) We observe that the solutions v and v0 determined in Sections 4 and 5 possess some of the character-
istic properties of Saint-Venant�s solution from the classical theory of elasticity.

Indeed, we see that (4.28) and (5.18) are the solutions of the problem (P1) which satisfy the conditions
(4.2). Also, we remark that v0 given by (4.40) is the solution of the flexure problem which can be represented
in the form (4.29). These representations of the solutions are analogous to those established by Ies�an (1987)
for the classical Saint-Venant�s solution.

We notice that the stress fields N, M and h are independent of the axial coordinate z in the case of the
extension-bending-torsion problem (see (4.8)), while for the flexure problem the stress fields N, M and h

depend linearly on z. This property corresponds to the characterization of Saint-Venant�s solution given
by Voigt (1887).
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Clebsch (1862) has proved that Saint-Venant�s solution can be distinguished among all the solutions of
the relaxed problem by the property that the stress vector on any plane normal to the cross-sections of the
cylinder is parallel to its generators.

Let us compute the contact force N acting on a straight line normal to the plane x1Ox2. Since
Nss = Vs = 0 in the case of open cylindrical surfaces, we have N = Nsze3. Hence, N is parallel to the gener-
ator and we find a property of the solution analogous to Clebsch�s characterization.

In the case of the problem (P1) for closed cylindrical shells, we obtain that N = Baea + Nsze3. Thus, the
vector N is parallel to a fixed plane which is parallel to the generator and N has a constant projection on the
plane x1Ox2.

(ii) From the results of Sections 4 and 5 we can deduce separately the solutions for the extension problem
(characterized by R0

a ¼ M0
i ¼ 0), the bending problem (R0

i ¼ M0
3 ¼ 0) and the torsion problem

(R0
i ¼ M0

a ¼ 0).
In view of (4.24)–(4.27) and (5.14)–(5.17), we observe that the torsion deformation uncouples from the

extension and bending of cylindrical Cosserat shells with voids. Moreover, for open cylindrical shells,
extension and bending are also uncoupled.

Taking into account the expressions of the solutions obtained, we observe the interaction between the
displacement fields and the porosity field. Indeed, the displacement u and the director displacement d are
influenced by the porosity of the material, while the volume fraction field suffers changes due to the defor-
mation of the shell.

In the case of the torsion problem we have ai = Bi = 0. Hence, the solutions (4.28) and (5.18) reduce to
the results obtained by Wenner (1968) for the torsion of cylindrical shells. Wenner (1968) has shown that
these results are in agreement with the work of Reissner (1959), which deals with the classical theory of
shells.

We remark that the torsion of cylindrical shells with voids has no effect on the porosity, since u = 0.
(iii) The case of Cosserat shells made from an elastic material which is not porous is characterized by the

relations
u ¼ 0; bk ¼ 0 ðk ¼ 1; . . . ; 5Þ: ð6:1Þ
If we substitute (6.1) into the appropriate equations derived in this work, then we obtain the solution of the
relaxed Saint-Venant�s problem for Cosserat shells (without voids). Bı̂rsan (2004) has studied this problem
in detail and has deduced its solution.

In what follows, we investigate the correspondence between the solution of Saint-Venant�s problem in
the theory of Cosserat shells made from an elastic material and the analogous results from the classical the-
ory of shells.

6.2. Comparison with corresponding results from the classical shell theory

We consider cylindrical shells made from an homogeneous and isotropic elastic material, modelled as
Cosserat surfaces. Since the shells are not porous, the volume fraction field is constant g = 1 and (6.1) holds.
Let k, l be the Lamé constants, E is Young�s modulus and m designates Poisson�s ratio for this elastic mate-
rial. We denote by f the constant thickness of the shell and let
C ¼ Ef
1� m2

; D ¼ Ef3

12ð1� m2Þ :
In Naghdi (1972), Section 24, the constitutive coefficients a1, . . .,a9 have been determined in terms of m,
C and D. Thus, we have
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a1 ¼ a9 ¼
mð1� mÞ
1� 2m

C; a2 ¼
1� m
2

C; a4 ¼
ð1� mÞ2

1� 2m
C;

a5 ¼ mD; a6 ¼ a7 ¼
1� m
2

D;

ð6:2Þ
while the coefficients a3 and a8 remain unspecified and have the orders of magnitude
a3 ¼ OðCÞ; a8 ¼ OðDÞ: ð6:3Þ

In view of (6.1)–(6.3), we deduce that a0 = D, b0 = m, A = B = �m. From the boundary-value problems
(4.17) and (4.18), (5.6)–(5.8) we obtain
yðaÞ ¼ �mxa þ OðfÞ; zðaÞ ¼ �mxa þ OðfÞ; a ¼ 1; 2 ð6:4Þ
and also (in the case of closed cylindrical shells)
F ðaÞ ¼
1

C
ðx0a þ �baxbr0Þ þ OðfÞ; GðaÞ ¼ � m

ð1� mÞC ðx0a þ �baxbr0Þ þ OðfÞ;

F ð3Þ ¼ � 1

C
r0 þ OðfÞ; Gð3Þ ¼

m
ð1� mÞC r0 þ OðfÞ;

ð6:5Þ
while C, u(a) and U(i) do not arise.

Remark. For a slightly less general theory of Cosserat shells (also discussed in Naghdi, 1972, Section 24) we
have a8 = 0. Hence, Ma3 is absent. In this type of linear theory, which already includes the linear theories of
shells currently employed in the literature, the relations (6.4) become y(a) = z(a) = �m xa and (6.5) can be
written in a simpler form, by dropping the terms O(f).

Introducing the formulae (6.1)–(6.5) into the appropriate expressions of the solutions derived in Sections
4 and 5, and neglecting some terms of orders O(f2), O(f3) or O(f4), we obtain the approximate solution of
Saint-Venant�s problem presented below.

For the extension-bending-torsion problem, the displacement field is given by
ua ¼
1

2
�ababðx23 � mxcxcÞ � mð�bcabxc þ a3Þxa � k0�abxbx3 þ Sa½ai;Bi�ðsÞ;

u3 ¼ ð�abaaxb þ a3Þx3 � k0

Z s

0

�abxax0b dsþ ek0
2Ac

�s
s:

ð6:6Þ
Here, e is a parameter which is set to be e = 0 for open cylindrical shells, whereas e = 1 for closed cylindrical
shells. Thus, by using the parameter e, we are able to write the solution for both open and closed cylindrical
shells in a single formula.

In (6.6) we have denoted by Sa[ai,Bi](s) the function
Sa½ai;Bi�ðsÞ ¼
Z s

0

�bax0b

Z n

0

mð�cdacxd þ a3Þr0 þ 1

D
ð�cdBcxd þ B3Þ

� �
dsdn; ð6:7Þ
where ai and Bi are constants and s 2 ½0;�s�.
The constants k0 and ai(i = 1,2,3) can be expressed in terms of the resultant axial force R0

3, bending mo-
ments M0

a and twisting moment M0
3 acting on the end edges of the cylindrical shell, by the relations
a3 ¼ � R0
3

Ef�s
; ð6:8Þ

�bcab

Z �s

0

xaxcds ¼ �ab
M0

b

Ef
; ð6:9Þ
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k0 ¼ �M0
3

lbD : ð6:10Þ
In (6.10), bD denotes the constant
bD ¼ 1

3
f3�s for open cylindrical shells;

bD ¼ 4f
1

�s
A2

c for closed cylindrical shells:

ð6:11Þ
As we know from Section 4 , we have Bi = 0(i = 1,2,3) for open cylindrical shells. On the other hand, for
closed cylindrical shells the constants Bi can be determined in terms of ai(i = 1,2,3) from the relations
�bc
Bb

D

Z �s

0

xaxc ds ¼ �m
Z �s

0

ð�bcabxc þ a3Þxar0 ds;

B3

D
�s ¼ �m

Z �s

0

ð�bcabxc þ a3Þr0 ds:

ð6:12Þ
(These equations are equivalent to the conditions Sa½ai;Bi�ð�sÞ ¼ S0
a½ai;Bi�ð�sÞ ¼ 0.)

We observe that the constants a3, aa and k0, respectively, represent measures of stretch, curvature and
twist of the cylindrical shell considered as a beam. Thus, the relations (6.8)–(6.11) coincide with the classical
results given in Reissner and Tsai (1972) (for the case of an isotropic material). The same results can be
obtained from the work of Berdichevsky et al. (1992) for the case of isotropic thin-walled closed-cross-
section tubes (see also Ladevèze et al., 2004). We mention that the torque-twist relations (6.10) and
(6.11) are established in Timoshenko and Goodier (1951), Sections 94, 98, 102 and in Sokolnikoff
(1956), Section 47. The problem of Saint-Venant torsion of thin-walled tubes is also discussed in Reissner
(1970).

The displacement in the axial direction u3 given by (6.6)2 coincide with the results obtained from the
work of Reissner and Tsai (1972) for isotropic materials. Also, the components ua of the displacement vec-
tor for open cylindrical shells have the same form as the solution found by Reissner and Tsai, except for the
term Sa[ai,Bi](s) which appears in (6.6)1. As we will show later, the term Sa[ai,Bi](s) vanishes for initially flat

shells (i.e. plates) and for circular closed cylindrical shells, so that the displacements ua correspond exactly
to the results of Reissner and Tsai for these cases.

In the same way, using the relations (6.1)–(6.5) and the results of Sections 4 and 5 we find that the
approximate solution of the flexure problem is
u0a ¼ 1
2
�abbbx3ð13x

2
3 � mxcxcÞ � mð�bcbbxcÞxax3 � k2�abxbx3 þ x3Sa½bb; 0;Ci�ðsÞ;

u03 ¼ 1
2
ð�abbaxbÞx23 þ 1

2
mx21ðb1x2 � 1

3
b2x1Þ þ 1

2
mx22ð13b1x2 � b2x1Þ

� k2

Z s

0

�abxax0b ds� m
Z s

0

ðb1x21x02 � b2x22x
0
1Þds� 2ð1þ mÞ

Z s

0

Z n

0

ð�abbaxbÞdsdn

� e
1þ m
Ac

s
Z �s

0

ð�abx0axbÞ
Z s

0

�cdbcxddndsþ
Z s

0

x0aSa½bb; 0;Ci�ds:

ð6:13Þ
The constants ba(a = 1,2) can be expressed in terms of R0
a from the system of algebraic equations
�bcbb

Z �s

0

xaxc ds ¼ �R0
a

Ef
; ð6:14Þ
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while the constant k2 which appear in (6.13) has the following value:
k2 ¼
Ef

lbD
Z �s

0

ð�abx0axbÞ
Z s

0

�cdbcxd dnds

� e
2Ac

m
Z �s

0

ðb1x21x02 � b2x22x
0
1Þdsþ

�
2ð1þ mÞ

Z �s

0

Z s

0

ð�abbaxbÞdnds�
Z �s

0

x0aSa½bb; 0;Ci�ds
�
: ð6:15Þ
The constants Ci(i = 1,2,3) are set to be Ci = 0 for open cylindrical shells, whereas for closed cylindrical
shells Ci are given in terms of ba by the relations
�bc
Cb

D

Z �s

0

xaxc ds ¼ �m
Z �s

0

ð�bcbbxcÞxar0 ds;

C3

D
�s ¼ �m

Z �s

0

ð�bcbbxcÞr0 ds:

ð6:16Þ
In what follows, we particularize the above results for the cases of initially flat cylindrical shells (i.e. rectan-
gular plates) and circular closed cylindrical shells.

Consider first the deformation of rectangular plates, as a special case of the problem solved in Section 4,
with
x1ðsÞ ¼ s� l0; x2ðsÞ ¼ 0; s 2 ½0; 2l0�: ð6:17Þ

If we substitute (6.17) into (6.6), then we obtain the following solution of the extension-bending-torsion
problem:
u1 ¼
1

2
a2ðx23 þ mx21Þ � ma3x1;

u2 ¼ � 1

2
a1ðx23 � mx21Þ þ k0x1x3;

u3 ¼ �a2x1x3 þ a3x3:

ð6:18Þ
In the case of plates, the constants aa can no longer be computed from the approximate relations (6.9), since
the determinant of the system is null. Instead, by using directly (4.25) and (4.26) we deduce
I11 ¼ � 1

6
l0Ef

3; I22 ¼ � 2

3
l30Ef; I12 ¼ I21 ¼ 0;
so that
a1 ¼ � 6M0
1

l0Ef
3
; a2 ¼ � 3M0

2

2l30Ef
: ð6:19Þ
From (6.8) and (6.10) we get
a3 ¼ � R0
3

2l0Ef
; k0 ¼ � 3M0

3

2l0lf
3
: ð6:20Þ
The solution (6.18)–(6.20) coincides with the result presented by Reissner and Tsai (1972) for plates, when
the elastic material is isotropic.

In view of (6.13) and (6.17), for the flexure problem we obtain the following displacement field:
u01 ¼ 1
2
b2x3ð13x

2
3 þ mx21Þ;

u02 ¼ �1
2
b1x3ð13x

2
3 � mx21Þ;

u03 ¼ 2þm
6
b2x31 � 1

2
b2x1x23 � ð1þ mÞb2l20x1:

ð6:21Þ
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Here, ba are given by
b1 ¼ � 6R0
2

l0Ef
3
; b2 ¼ � 3R0

1

2l30Ef
: ð6:22Þ
The flexure problem for plates has also been studied by Timoshenko and Goodier (1951), Section 20, in the
case when R0

1 6¼ 0;R0
2 ¼ 0, and the result is the same as in (6.21) and (6.22).

Let us consider now Saint-Venant�s problem for circular closed cylindrical shells. In this case, the func-
tions xa(s) are given by (5.19) and we notice that Sa[ai,Bi](s) = Sa[bb, 0,Ci](s) = 0. Then, from (6.6) and
(6.8)–(6.11) we deduce the solution of the extension-bending-torsion problem
ua ¼
1

2
�ababx23 � mð�bcabxc þ a3Þxa � k0�abxbx3;

u3 ¼ ð�abaaxb þ a3Þx3;
ð6:23Þ
where
a3 ¼ � R0
3

2pR0Ef
; aa ¼ � M0

a

pR3
0Ef

; k0 ¼ � M0
3

2pR3
0lf

: ð6:24Þ
The same solution (6.23) and (6.24) is obtained from the results of Reissner and Tsai (1972).
From (6.13) and (6.14) we deduce the following solution of the flexure problem for circular closed cylin-

drical shells:
u0a ¼ 1
6
�abbbx33 � mð�bcbbxcÞxax3;

u03 ¼ ð�abbaxbÞ½12x
2
3 þ 2ð1þ mÞR2

0�;
ð6:25Þ
where
ba ¼ �
�abR

0
b

pR3
0Ef

: ð6:26Þ
Remark. The solution (6.23)–(6.26) of Saint-Venant�s problem for circular cylindrical shells can also be
obtained directly from the results of Section 5.2, if we use relations (6.1)–(6.3) and then make some
approximations, by neglecting terms of order Oðf2Þ.

We close this section by observing the analogy between the solution (6.6)–(6.13) for cylindrical shells and
the classical Saint-Venant�s solution for solid cylinders.

In order to make this analogy more visible, we adopt the notations
�aa ¼ �baab; �ba ¼ �babb;
and introduce the functions
�uðsÞ ¼ �
Z s

0

�abxax0b dsþ e
2Ac

�s
s;

�wðsÞ ¼ �m
Z s

0

ð�b1x01x22 þ �b2x02x
2
1Þds� e

s
�s

Z �s

0

ð�b1x01x22 þ �b2x02x
2
1Þds

� �
� 2ð1þ mÞ

Z s

0

Z n

0

�baxadsdn� e
s
�s

Z �s

0

Z n

0

�baxadsdn
� �

:



2056 M. Bı̂rsan / International Journal of Solids and Structures 42 (2005) 2033–2057
Then, the solution (6.6)–(6.13) of Saint-Venant�s problem can be written in the form
ua ¼ �1
2
�bax3ð13x

2
3 � mxbxbÞ � m�bbxbxax3 � 1

2
�aaðx23 � mxbxbÞ

� mð�abxb þ a3Þxa � ðk0 þ k2Þ�abxbx3 þ Sa½ai;Bi� þ x3Sa½bb; 0;Ci�;
u3 ¼ 1

2
�baxax23 þ 1

2
mx21ð13�b1x1 þ �b2x2Þ þ 1

2
mx22ð�b1x1 þ 1

3
�b2x2Þ

þ ð�aaxa þ a3Þx3 þ ðk0 þ k2Þ�uþ �wþ
Z s

0

x0aSa½bb; 0;Ci�ds

� e
s
�s

Z �s

0

x0aSa½bb; 0;Ci�ds:

ð6:27Þ
Except for the terms containing Sa , the displacement field (6.27) has the same form as the well-known
Saint-Venant�s solution for solid cylinders. The function �uðsÞ represents the torsion function associated
to the deformation of cylindrical shells.

The analogy with the classical Saint-Venant�s solution can be extended also to the relations between the
constants �aa; a3; �ba; k0 appearing in (6.27) and the resultant forces and moments R0

i ;M
0
i . Without loss of

generality, we can choose the Cartesian coordinate system such that the origin is at the centroid, with
the coordinate axes being principal axes, i.e. we assume that (4.1) holds and that

R �s
0 x1x2 ds ¼ 0: Then,

the relations (6.8)–(6.10) and (6.14) become
�a1E f
Z �s

0

x21 ds
� �

¼ M0
2; �a2E f

Z �s

0

x22 ds
� �

¼ �M0
1;

a3Eðf�sÞ ¼ �R0
3; k0ðlbDÞ ¼ �M0

3;

�b1E f
Z �s

0

x21 ds
� �

¼ �R0
1;

�b2E f
Z �s

0

x22 ds
� �

¼ �R0
2:

ð6:28Þ
These relations are analogue with the well-known Saint-Venant�s formulae for bending, extension, torsion
and flexure, respectively. Indeed, in (6.28) the product f�s corresponds to the area of the cross-section R of
the three-dimensional cylindrical shell, whereas the expression f

R �s
0
x2a ds is the analogue of

R
Rx

2
a dsða ¼ 1; 2Þ:

The quantity lbD represents the torsional rigidity of the (open or closed) cylindrical shell.
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